首先感謝教程 http://blog.csdn.net/ruotianxia/article/details/78331964 很全面很詳細
1.配置好deeplab_v2 source code:https://bitbucket.org/aquariusjay/deeplab-public-ver2/src 配置過程不做描述了。。
2.建立一個項目文件夾,文件夾里包括子文件夾config feature feature2 list log model res 為了方便可以復制這個git里的voc2012后做修改 https://github.com/xmojiao/deeplab_v2
3.數據的准備。 數據主要包括圖片以及圖片對應的label(也為png圖片),可以存放在任意你喜歡的位置,后續只需給定路徑即可。將數據分為訓練和驗證集制作list 具體格式參照voc2012 list文件夾中的格式。 為了后續測試最好也留一部分做test set。 另外還有val跟test的圖片id list 只要id 不要前綴
4.訓練的protxt文件存放在config/deeplab_largeFOV中,在這里使用的shell文件 run_pascal.sh 訓練故 trainval.pt 不用修改, 在solver.pt中可修改lr及模型存放位置等。。
5.修改run_pascal.sh
#!/bin/sh
## MODIFY PATH for YOUR SETTING
ROOT_DIR=/home/aigrp/kai/segmentation_data ##數據根目錄
CAFFE_DIR=/home/aigrp/kai/deeplab/deeplab-public-ver2 ##deeplab_v2根目錄
CAFFE_BIN=${CAFFE_DIR}/build/tools/caffe.bin ##deeplab caffe.bin
EXP=.
if [ "${EXP}" = "." ]; then
NUM_LABELS=2 ## 類別數
DATA_ROOT=${ROOT_DIR}
else
NUM_LABELS=0
echo "Wrong exp name"
fi
## Specify which model to train
########### voc12 ################
NET_ID=deeplab_largeFOV
## Variables used for weakly or semi-supervisedly training
#TRAIN_SET_SUFFIX=train
TRAIN_SET_SUFFIX=_aug
#TRAIN_SET_STRONG=train
#TRAIN_SET_STRONG=train200
#TRAIN_SET_STRONG=train500
#TRAIN_SET_STRONG=train1000
#TRAIN_SET_STRONG=train750
#TRAIN_SET_WEAK_LEN=5000
DEV_ID=3 ## 指定GPU
#####
## Create dirs
CONFIG_DIR=${EXP}/config/${NET_ID}
MODEL_DIR=${EXP}/model/${NET_ID}
mkdir -p ${MODEL_DIR}
LOG_DIR=${EXP}/log/${NET_ID}
mkdir -p ${LOG_DIR}
export GLOG_log_dir=${LOG_DIR}
## Run
RUN_TRAIN=1 ##1時train
RUN_TEST=0 ##1時test
RUN_TRAIN2=0
RUN_TEST2=0
## Training #1 (on train_aug)
if [ ${RUN_TRAIN} -eq 1 ]; then
#
LIST_DIR=${EXP}/list
TRAIN_SET=train${TRAIN_SET_SUFFIX}
if [ -z ${TRAIN_SET_WEAK_LEN} ]; then
TRAIN_SET_WEAK=${TRAIN_SET}_diff_${TRAIN_SET_STRONG}
comm -3 ${LIST_DIR}/${TRAIN_SET}.txt ${LIST_DIR}/${TRAIN_SET_STRONG}.txt > ${LIST_DIR}/${TRAIN_SET_WEAK}.txt
else
TRAIN_SET_WEAK=${TRAIN_SET}_diff_${TRAIN_SET_STRONG}_head${TRAIN_SET_WEAK_LEN}
comm -3 ${LIST_DIR}/${TRAIN_SET}.txt ${LIST_DIR}/${TRAIN_SET_STRONG}.txt | head -n ${TRAIN_SET_WEAK_LEN} > ${LIST_DIR}/${TRAIN_SET_WEAK}.txt
fi
#
MODEL=${EXP}/model/${NET_ID}/init.caffemodel
#
echo Training net ${EXP}/${NET_ID}
for pname in train solver; do
sed "$(eval echo $(cat sub.sed))" \
${CONFIG_DIR}/${pname}.prototxt > ${CONFIG_DIR}/${pname}_${TRAIN_SET}.prototxt
done
CMD="${CAFFE_BIN} train \
--solver=${CONFIG_DIR}/solver_${TRAIN_SET}.prototxt \
--gpu=${DEV_ID}"
if [ -f ${MODEL} ]; then
CMD="${CMD} --weights=${MODEL}"
fi
echo Running ${CMD} && ${CMD}
fi
## Test #1 specification (on val or test)
if [ ${RUN_TEST} -eq 1 ]; then
#
for TEST_SET in val; do
TEST_ITER=`cat ${EXP}/list/${TEST_SET}.txt | wc -l`
MODEL=${EXP}/model/${NET_ID}/test.caffemodel
if [ ! -f ${MODEL} ]; then
MODEL=`ls -t ${EXP}/model/${NET_ID}/train_m2_iter_80000.caffemodel | head -n 1`
fi
#
echo Testing net ${EXP}/${NET_ID}
FEATURE_DIR=${EXP}/features/${NET_ID}
mkdir -p ${FEATURE_DIR}/${TEST_SET}/fc8
mkdir -p ${FEATURE_DIR}/${TEST_SET}/fc9
mkdir -p ${FEATURE_DIR}/${TEST_SET}/seg_score
sed "$(eval echo $(cat sub.sed))" \
${CONFIG_DIR}/test.prototxt > ${CONFIG_DIR}/test_${TEST_SET}.prototxt
CMD="${CAFFE_BIN} test \
--model=${CONFIG_DIR}/test_${TEST_SET}.prototxt \
--weights=${MODEL} \
--gpu=${DEV_ID} \
--iterations=${TEST_ITER}"
echo Running ${CMD} && ${CMD}
done
fi
## Training #2 (finetune on trainval_aug)
if [ ${RUN_TRAIN2} -eq 1 ]; then
#
LIST_DIR=${EXP}/list
TRAIN_SET=trainval${TRAIN_SET_SUFFIX}
if [ -z ${TRAIN_SET_WEAK_LEN} ]; then
TRAIN_SET_WEAK=${TRAIN_SET}_diff_${TRAIN_SET_STRONG}
comm -3 ${LIST_DIR}/${TRAIN_SET}.txt ${LIST_DIR}/${TRAIN_SET_STRONG}.txt > ${LIST_DIR}/${TRAIN_SET_WEAK}.txt
else
修改后保存,運行 sh run_pascal.sh
過程比較緩慢。
6.訓練完成后再次修改run_pascal.sh test =1 做測試。
后續的crf部分還沒有在自己的數據集上嘗試,目前就到這里