分布式id生成算法的有很多種,Twitter的SnowFlake就是其中經典的一種。
概述
SnowFlake算法生成id的結果是一個64bit大小的整數,它的結構如下圖:
1位
,不用。二進制中最高位為1的都是負數,但是我們生成的id一般都使用整數,所以這個最高位固定是0-
41位
,用來記錄時間戳(毫秒)。- 41位可以表示241−1個數字,
- 如果只用來表示正整數(計算機中正數包含0),可以表示的數值范圍是:0 至 241−1,減1是因為可表示的數值范圍是從0開始算的,而不是1。
- 也就是說41位可以表示241−1個毫秒的值,轉化成單位年則是(241−1)/(1000∗60∗60∗24∗365)=69年
-
10位
,用來記錄工作機器id。- 可以部署在210=1024個節點,包括
5位datacenterId
和5位workerId
5位(bit)
可以表示的最大正整數是25−1=31,即可以用0、1、2、3、....31這32個數字,來表示不同的datecenterId或workerId
- 可以部署在210=1024個節點,包括
-
12位
,序列號,用來記錄同毫秒內產生的不同id。12位(bit)
可以表示的最大正整數是212−1=4096,即可以用0、1、2、3、....4095這4096個數字,來表示同一機器同一時間截(毫秒)內產生的4096個ID序號
由於在Java中64bit的整數是long類型,所以在Java中SnowFlake算法生成的id就是long來存儲的。
SnowFlake可以保證:
- 所有生成的id按時間趨勢遞增
- 整個分布式系統內不會產生重復id(因為有datacenterId和workerId來做區分)
Talk is cheap, show you the code
以下是Twitter官方原版的,用Scala寫的,(我也不懂Scala,當成Java看即可):
/** Copyright 2010-2012 Twitter, Inc.*/ package com.twitter.service.snowflake import com.twitter.ostrich.stats.Stats import com.twitter.service.snowflake.gen._ import java.util.Random import com.twitter.logging.Logger /** * An object that generates IDs. * This is broken into a separate class in case * we ever want to support multiple worker threads * per process */ class IdWorker( val workerId: Long, val datacenterId: Long, private val reporter: Reporter, var sequence: Long = 0L) extends Snowflake.Iface { private[this] def genCounter(agent: String) = { Stats.incr("ids_generated") Stats.incr("ids_generated_%s".format(agent)) } private[this] val exceptionCounter = Stats.getCounter("exceptions") private[this] val log = Logger.get private[this] val rand = new Random val twepoch = 1288834974657L private[this] val workerIdBits = 5L private[this] val datacenterIdBits = 5L private[this] val maxWorkerId = -1L ^ (-1L << workerIdBits) private[this] val maxDatacenterId = -1L ^ (-1L << datacenterIdBits) private[this] val sequenceBits = 12L private[this] val workerIdShift = sequenceBits private[this] val datacenterIdShift = sequenceBits + workerIdBits private[this] val timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits private[this] val sequenceMask = -1L ^ (-1L << sequenceBits) private[this] var lastTimestamp = -1L // sanity check for workerId if (workerId > maxWorkerId || workerId < 0) { exceptionCounter.incr(1) throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0".format(maxWorkerId)) } if (datacenterId > maxDatacenterId || datacenterId < 0) { exceptionCounter.incr(1) throw new IllegalArgumentException("datacenter Id can't be greater than %d or less than 0".format(maxDatacenterId)) } log.info("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d", timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId) def get_id(useragent: String): Long = { if (!validUseragent(useragent)) { exceptionCounter.incr(1) throw new InvalidUserAgentError } val id = nextId() genCounter(useragent) reporter.report(new AuditLogEntry(id, useragent, rand.nextLong)) id } def get_worker_id(): Long = workerId def get_datacenter_id(): Long = datacenterId def get_timestamp() = System.currentTimeMillis protected[snowflake] def nextId(): Long = synchronized { var timestamp = timeGen() if (timestamp < lastTimestamp) { exceptionCounter.incr(1) log.error("clock is moving backwards. Rejecting requests until %d.", lastTimestamp); throw new InvalidSystemClock("Clock moved backwards. Refusing to generate id for %d milliseconds".format( lastTimestamp - timestamp)) } if (lastTimestamp == timestamp) { sequence = (sequence + 1) & sequenceMask if (sequence == 0) { timestamp = tilNextMillis(lastTimestamp) } } else { sequence = 0 } lastTimestamp = timestamp ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence } protected def tilNextMillis(lastTimestamp: Long): Long = { var timestamp = timeGen() while (timestamp <= lastTimestamp) { timestamp = timeGen() } timestamp } protected def timeGen(): Long = System.currentTimeMillis() val AgentParser = """([a-zA-Z][a-zA-Z\-0-9]*)""".r def validUseragent(useragent: String): Boolean = useragent match { case AgentParser(_) => true case _ => false } }
Scala是一門可以編譯成字節碼的語言,簡單理解是在Java語法基礎上加上了很多語法糖,例如不用每條語句后寫分號,可以使用動態類型等等。抱着試一試的心態,我把Scala版的代碼“翻譯”成Java版本的,對scala代碼改動的地方如下:
/** Copyright 2010-2012 Twitter, Inc.*/ package com.twitter.service.snowflake import com.twitter.ostrich.stats.Stats import com.twitter.service.snowflake.gen._ import java.util.Random import com.twitter.logging.Logger /** * An object that generates IDs. * This is broken into a separate class in case * we ever want to support multiple worker threads * per process */ class IdWorker( // | val workerId: Long, // | val datacenterId: Long, // |<--這部分改成Java的構造函數形式 private val reporter: Reporter,//日志相關,刪 // | var sequence: Long = 0L) // | extends Snowflake.Iface { //接口找不到,刪 // | private[this] def genCounter(agent: String) = { // | Stats.incr("ids_generated") // | Stats.incr("ids_generated_%s".format(agent)) // |<--錯誤、日志處理相關,刪 } // | private[this] val exceptionCounter = Stats.getCounter("exceptions") // | private[this] val log = Logger.get // | private[this] val rand = new Random // | val twepoch = 1288834974657L private[this] val workerIdBits = 5L private[this] val datacenterIdBits = 5L private[this] val maxWorkerId = -1L ^ (-1L << workerIdBits) private[this] val maxDatacenterId = -1L ^ (-1L << datacenterIdBits) private[this] val sequenceBits = 12L private[this] val workerIdShift = sequenceBits private[this] val datacenterIdShift = sequenceBits + workerIdBits private[this] val timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits private[this] val sequenceMask = -1L ^ (-1L << sequenceBits) private[this] var lastTimestamp = -1L //----------------------------------------------------------------------------------------------------------------------------// // sanity check for workerId // if (workerId > maxWorkerId || workerId < 0) { // exceptionCounter.incr(1) //<--錯誤處理相關,刪 // throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0".format(maxWorkerId)) //這 // |-->改成:throw new IllegalArgumentException //部 // (String.format("worker Id can't be greater than %d or less than 0",maxWorkerId)) //分 } //放 //到 if (datacenterId > maxDatacenterId || datacenterId < 0) { //構 exceptionCounter.incr(1) //<--錯誤處理相關,刪 //造 throw new IllegalArgumentException("datacenter Id can't be greater than %d or less than 0".format(maxDatacenterId)) //函 // |-->改成:throw new IllegalArgumentException //數 // (String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId)) //中 } // // log.info("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d", // timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId) // // |-->改成:System.out.printf("worker...%d...",timestampLeftShift,...); // //----------------------------------------------------------------------------------------------------------------------------// //-------------------------------------------------------------------// //這個函數刪除錯誤處理相關的代碼后,剩下一行代碼:val id = nextId() // //所以我們直接調用nextId()函數可以了,所以在“翻譯”時可以刪除這個函數 // def get_id(useragent: String): Long = { // if (!validUseragent(useragent)) { // exceptionCounter.incr(1) // throw new InvalidUserAgentError //刪 } //除 // val id = nextId() // genCounter(useragent) // // reporter.report(new AuditLogEntry(id, useragent, rand.nextLong)) // id // } // //-------------------------------------------------------------------// def get_worker_id(): Long = workerId // | def get_datacenter_id(): Long = datacenterId // |<--改成Java函數 def get_timestamp() = System.currentTimeMillis // | protected[snowflake] def nextId(): Long = synchronized { // 改成Java函數 var timestamp = timeGen() if (timestamp < lastTimestamp) { exceptionCounter.incr(1) // 錯誤處理相關,刪 log.error("clock is moving backwards. Rejecting requests until %d.", lastTimestamp); // 改成System.err.printf(...) throw new InvalidSystemClock("Clock moved backwards. Refusing to generate id for %d milliseconds".format( lastTimestamp - timestamp)) // 改成RumTimeException } if (lastTimestamp == timestamp) { sequence = (sequence + 1) & sequenceMask if (sequence == 0) { timestamp = tilNextMillis(lastTimestamp) } } else { sequence = 0 } lastTimestamp = timestamp ((timestamp - twepoch) << timestampLeftShift) | // |<--加上關鍵字return (datacenterId << datacenterIdShift) | // | (workerId << workerIdShift) | // | sequence // | } protected def tilNextMillis(lastTimestamp: Long): Long = { // 改成Java函數 var timestamp = timeGen() while (timestamp <= lastTimestamp) { timestamp = timeGen() } timestamp // 加上關鍵字return } protected def timeGen(): Long = System.currentTimeMillis() // 改成Java函數 val AgentParser = """([a-zA-Z][a-zA-Z\-0-9]*)""".r // | // | def validUseragent(useragent: String): Boolean = useragent match { // |<--日志相關,刪 case AgentParser(_) => true // | case _ => false // | } // | }
改出來的Java版:
public class IdWorker{ private long workerId; private long datacenterId; private long sequence; public IdWorker(long workerId, long datacenterId, long sequence){ // sanity check for workerId if (workerId > maxWorkerId || workerId < 0) { throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId)); } if (datacenterId > maxDatacenterId || datacenterId < 0) { throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId)); } System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d", timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId); this.workerId = workerId; this.datacenterId = datacenterId; this.sequence = sequence; } private long twepoch = 1288834974657L; private long workerIdBits = 5L; private long datacenterIdBits = 5L; private long maxWorkerId = -1L ^ (-1L << workerIdBits); private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); private long sequenceBits = 12L; private long workerIdShift = sequenceBits; private long datacenterIdShift = sequenceBits + workerIdBits; private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; private long sequenceMask = -1L ^ (-1L << sequenceBits); private long lastTimestamp = -1L; public long getWorkerId(){ return workerId; } public long getDatacenterId(){ return datacenterId; } public long getTimestamp(){ return System.currentTimeMillis(); } public synchronized long nextId() { long timestamp = timeGen(); if (timestamp < lastTimestamp) { System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp); throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp)); } if (lastTimestamp == timestamp) { sequence = (sequence + 1) & sequenceMask; if (sequence == 0) { timestamp = tilNextMillis(lastTimestamp); } } else { sequence = 0; } lastTimestamp = timestamp; return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence; } private long tilNextMillis(long lastTimestamp) { long timestamp = timeGen(); while (timestamp <= lastTimestamp) { timestamp = timeGen(); } return timestamp; } private long timeGen(){ return System.currentTimeMillis(); } //---------------測試--------------- public static void main(String[] args) { IdWorker worker = new IdWorker(1,1,1); for (int i = 0; i < 30; i++) { System.out.println(worker.nextId()); } } }
代碼理解
上面的代碼中,有部分位運算的代碼,如:
sequence = (sequence + 1) & sequenceMask; private long maxWorkerId = -1L ^ (-1L << workerIdBits); return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence;
為了能更好理解,我對相關知識研究了一下。
負數的二進制表示
在計算機中,負數的二進制是用補碼
來表示的。
假設我是用Java中的int類型來存儲數字的,
int類型的大小是32個二進制位(bit),即4個字節(byte)。(1 byte = 8 bit)
那么十進制數字3
在二進制中的表示應該是這樣的:
00000000 00000000 00000000 00000011 // 3的二進制表示,就是原碼
那數字-3
在二進制中應該如何表示?
我們可以反過來想想,因為-3+3=0,
在二進制運算中把-3的二進制看成未知數x來求解
,
求解算式的二進制表示如下:
00000000 00000000 00000000 00000011 //3,原碼 + xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx //-3,補碼 ----------------------------------------------- 00000000 00000000 00000000 00000000
反推x的值,3的二進制加上什么值才使結果變成00000000 00000000 00000000 00000000
?:
00000000 00000000 00000000 00000011 //3,原碼 + 11111111 11111111 11111111 11111101 //-3,補碼 ----------------------------------------------- 1 00000000 00000000 00000000 00000000
反推的思路是3的二進制數從最低位開始逐位加1,使溢出的1不斷向高位溢出,直到溢出到第33位。然后由於int類型最多只能保存32個二進制位,所以最高位的1溢出了,剩下的32位就成了(十進制的)0。
補碼的意義就是可以拿補碼和原碼(3的二進制)相加,最終加出一個“溢出的0”
以上是理解的過程,實際中記住公式就很容易算出來:
- 補碼 = 反碼 + 1
- 補碼 = (原碼 - 1)再取反碼
因此-1
的二進制應該這樣算:
00000000 00000000 00000000 00000001 //原碼:1的二進制 11111111 11111111 11111111 11111110 //取反碼:1的二進制的反碼 11111111 11111111 11111111 11111111 //加1:-1的二進制表示(補碼)
用位運算計算n個bit能表示的最大數值
比如這樣一行代碼:
private long workerIdBits = 5L; private long maxWorkerId = -1L ^ (-1L << workerIdBits);
上面代碼換成這樣看方便一點:long maxWorkerId = -1L ^ (-1L << 5L)
咋一看真的看不准哪個部分先計算,於是查了一下Java運算符的優先級表:
所以上面那行代碼中,運行順序是:
- -1 左移 5,得結果a
- -1 異或 a
long maxWorkerId = -1L ^ (-1L << 5L)
的二進制運算過程如下:
-1 左移 5,得結果a :
11111111 11111111 11111111 11111111 //-1的二進制表示(補碼) 11111 11111111 11111111 11111111 11100000 //高位溢出的不要,低位補0 11111111 11111111 11111111 11100000 //結果a
-1 異或 a :
11111111 11111111 11111111 11111111 //-1的二進制表示(補碼) ^ 11111111 11111111 11111111 11100000 //兩個操作數的位中,相同則為0,不同則為1 --------------------------------------------------------------------------- 00000000 00000000 00000000 00011111 //最終結果31
最終結果是31,二進制00000000 00000000 00000000 00011111
轉十進制可以這么算:
那既然現在知道算出來long maxWorkerId = -1L ^ (-1L << 5L)
中的maxWorkerId = 31
,有什么含義?為什么要用左移5來算?如果你看過概述
部分,請找到這段內容看看:
5位(bit)
可以表示的最大正整數是25−1=31,即可以用0、1、2、3、....31這32個數字,來表示不同的datecenterId或workerId
-1L ^ (-1L << 5L)
結果是31
,25−1的結果也是31
,所以在代碼中,-1L ^ (-1L << 5L)
的寫法是利用位運算計算出5位能表示的最大正整數是多少
用mask防止溢出
有一段有趣的代碼:
sequence = (sequence + 1) & sequenceMask;
分別用不同的值測試一下,你就知道它怎么有趣了:
long seqMask = -1L ^ (-1L << 12L); //計算12位能耐存儲的最大正整數,相當於:2^12-1 = 4095 System.out.println("seqMask: "+seqMask); System.out.println(1L & seqMask); System.out.println(2L & seqMask); System.out.println(3L & seqMask); System.out.println(4L & seqMask); System.out.println(4095L & seqMask); System.out.println(4096L & seqMask); System.out.println(4097L & seqMask); System.out.println(4098L & seqMask); /** seqMask: 4095 1 2 3 4 4095 0 1 2 */
這段代碼通過位與
運算保證計算的結果范圍始終是 0-4095 !
用位運算匯總結果
還有另外一段詭異的代碼:
return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence;
為了弄清楚這段代碼,
首先
需要計算一下相關的值:
private long twepoch = 1288834974657L; //起始時間戳,用於用當前時間戳減去這個時間戳,算出偏移量 private long workerIdBits = 5L; //workerId占用的位數:5 private long datacenterIdBits = 5L; //datacenterId占用的位數:5 private long maxWorkerId = -1L ^ (-1L << workerIdBits); // workerId可以使用的最大數值:31 private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); // datacenterId可以使用的最大數值:31 private long sequenceBits = 12L;//序列號占用的位數:12 private long workerIdShift = sequenceBits; // 12 private long datacenterIdShift = sequenceBits + workerIdBits; // 12+5 = 17 private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; // 12+5+5 = 22 private long sequenceMask = -1L ^ (-1L << sequenceBits);//4095 private long lastTimestamp = -1L;
其次
寫個測試,把參數都寫死,並運行打印信息,方便后面來核對計算結果:
//---------------測試--------------- public static void main(String[] args) { long timestamp = 1505914988849L; long twepoch = 1288834974657L; long datacenterId = 17L; long workerId = 25L; long sequence = 0L; System.out.printf("\ntimestamp: %d \n",timestamp); System.out.printf("twepoch: %d \n",twepoch); System.out.printf("datacenterId: %d \n",datacenterId); System.out.printf("workerId: %d \n",workerId); System.out.printf("sequence: %d \n",sequence); System.out.println(); System.out.printf("(timestamp - twepoch): %d \n",(timestamp - twepoch)); System.out.printf("((timestamp - twepoch) << 22L): %d \n",((timestamp - twepoch) << 22L)); System.out.printf("(datacenterId << 17L): %d \n" ,(datacenterId << 17L)); System.out.printf("(workerId << 12L): %d \n",(workerId << 12L)); System.out.printf("sequence: %d \n",sequence); long result = ((timestamp - twepoch) << 22L) | (datacenterId << 17L) | (workerId << 12L) | sequence; System.out.println(result); } /** 打印信息: timestamp: 1505914988849 twepoch: 1288834974657 datacenterId: 17 workerId: 25 sequence: 0 (timestamp - twepoch): 217080014192 ((timestamp - twepoch) << 22L): 910499571845562368 (datacenterId << 17L): 2228224 (workerId << 12L): 102400 sequence: 0 910499571847892992 */
代入位移的值得之后,就是這樣:
return ((timestamp - 1288834974657) << 22) | (datacenterId << 17) | (workerId << 12) | sequence;
對於尚未知道的值,我們可以先看看概述
中對SnowFlake結構的解釋,再代入在合法范圍的值(windows系統可以用計算器方便計算這些值的二進制),來了解計算的過程。
當然,由於我的測試代碼已經把這些值寫死了,那直接用這些值來手工驗證計算結果即可:
long timestamp = 1505914988849L; long twepoch = 1288834974657L; long datacenterId = 17L; long workerId = 25L; long sequence = 0L; 設:timestamp = 1505914988849,twepoch = 1288834974657 1505914988849 - 1288834974657 = 217080014192 (timestamp相對於起始時間的毫秒偏移量),其(a)二進制左移22位計算過程如下: |<--這里開始左右22位 00000000 00000000 000000|00 00110010 10001010 11111010 00100101 01110000 // a = 217080014192 00001100 10100010 10111110 10001001 01011100 00|000000 00000000 00000000 // a左移22位后的值(la) |<--這里后面的位補0
設:datacenterId = 17,其(b)二進制左移17位計算過程如下: |<--這里開始左移17位 00000000 00000000 0|0000000 00000000 00000000 00000000 00000000 00010001 // b = 17 00000000 00000000 00000000 00000000 00000000 0010001|0 00000000 00000000 // b左移17位后的值(lb) |<--這里后面的位補0 設:workerId = 25,其(c)二進制左移12位計算過程如下: |<--這里開始左移12位 00000000 0000|0000 00000000 00000000 00000000 00000000 00000000 00011001 // c = 25 00000000 00000000 00000000 00000000 00000000 00000001 1001|0000 00000000 // c左移12位后的值(lc) |<--這里后面的位補0 設:sequence = 0,其二進制如下: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 // sequence = 0
現在知道了每個部分左移后的值(la,lb,lc),代碼可以簡化成下面這樣去理解:
return ((timestamp - 1288834974657) << 22) | (datacenterId << 17) | (workerId << 12) | sequence; ----------------------------- | |簡化 \|/ ----------------------------- return (la) | (lb) | (lc) | sequence;
上面的管道符號|
在Java中也是一個位運算符。其含義是:x的第n位和y的第n位 只要有一個是1,則結果的第n位也為1,否則為0
,因此,我們對四個數的位或運算
如下:
1 | 41 | 5 | 5 | 12 0|0001100 10100010 10111110 10001001 01011100 00|00000|0 0000|0000 00000000 //la 0|0000000 00000000 00000000 00000000 00000000 00|10001|0 0000|0000 00000000 //lb 0|0000000 00000000 00000000 00000000 00000000 00|00000|1 1001|0000 00000000 //lc or 0|0000000 00000000 00000000 00000000 00000000 00|00000|0 0000|0000 00000000 //sequence ------------------------------------------------------------------------------------------ 0|0001100 10100010 10111110 10001001 01011100 00|10001|1 1001|0000 00000000 //結果:910499571847892992
結果計算過程:
1) 從至左列出1出現的下標(從0開始算):
0000 1 1 00 1 0 1 000 1 0 1 0 1 1 1 1 1 0 1 000 1 00 1 0 1 0 1 1 1 0000 1 000 1 1 1 00 1 0000 0000 0000 59 58 55 53 49 47 45 44 43 42 41 39 35 32 30 28 27 26 21 17 16 15 12
2) 各個下標作為2的冪數來計算,並相加:
259+258+255+253+249+247+245+244+243+242+241+239+235+232+230+228+227+226+221+217+216+215+22
2^59} : 576460752303423488 2^58} : 288230376151711744 2^55} : 36028797018963968 2^53} : 9007199254740992 2^49} : 562949953421312 2^47} : 140737488355328 2^45} : 35184372088832 2^44} : 17592186044416 2^43} : 8796093022208 2^42} : 4398046511104 2^41} : 2199023255552 2^39} : 549755813888 2^35} : 34359738368 2^32} : 4294967296 2^30} : 1073741824 2^28} : 268435456 2^27} : 134217728 2^26} : 67108864 2^21} : 2097152 2^17} : 131072 2^16} : 65536 2^15} : 32768 + 2^12} : 4096 ---------------------------------------- 910499571847892992
計算截圖:
跟測試程序打印出來的結果一樣,手工驗證完畢!
觀察
1 | 41 | 5 | 5 | 12 0|0001100 10100010 10111110 10001001 01011100 00| | | //la 0| |10001| | //lb 0| | |1 1001| //lc or 0| | | |0000 00000000 //sequence ------------------------------------------------------------------------------------------ 0|0001100 10100010 10111110 10001001 01011100 00|10001|1 1001|0000 00000000 //結果:910499571847892992
上面的64位我按1、41、5、5、12的位數截開了,方便觀察。
-
縱向
觀察發現:- 在41位那一段,除了la一行有值,其它行(lb、lc、sequence)都是0,(我爸其它)
- 在左起第一個5位那一段,除了lb一行有值,其它行都是0
- 在左起第二個5位那一段,除了lc一行有值,其它行都是0
- 按照這規律,如果sequence是0以外的其它值,12位那段也會有值的,其它行都是0
-
橫向
觀察發現:- 在la行,由於左移了5+5+12位,5、5、12這三段都補0了,所以la行除了41那段外,其它肯定都是0
- 同理,lb、lc、sequnece行也以此類推
- 正因為左移的操作,使四個不同的值移到了SnowFlake理論上相應的位置,然后四行做
位或
運算(只要有1結果就是1),就把4段的二進制數合並成一個二進制數。
結論:
所以,在這段代碼中
return ((timestamp - 1288834974657) << 22) | (datacenterId << 17) | (workerId << 12) | sequence;
左移運算是為了將數值移動到對應的段(41、5、5,12那段因為本來就在最右,因此不用左移)。
然后對每個左移后的值(la、lb、lc、sequence)做位或運算,是為了把各個短的數據合並起來,合並成一個二進制數。
最后轉換成10進制,就是最終生成的id
擴展
在理解了這個算法之后,其實還有一些擴展的事情可以做:
- 根據自己業務修改每個位段存儲的信息。算法是通用的,可以根據自己需求適當調整每段的大小以及存儲的信息。
- 解密id,由於id的每段都保存了特定的信息,所以拿到一個id,應該可以嘗試反推出原始的每個段的信息。反推出的信息可以幫助我們分析。比如作為訂單,可以知道該訂單的生成日期,負責處理的數據中心等等。