“協同過濾”是推薦系統中的常用技術,按照分析維度的不同可實現“基於用戶”和“基於產品”的推薦。
以下是利用python實現電影推薦的具體方法,其中數據集源於《集體編程智慧》一書,后續的編程實現則完全是自己實現的(原書中的實現比較支離、難懂)。
這里我采用的是“基於產品”的推薦方法,因為一般情況下,產品的種類往往較少,而用戶的數量往往非常多,“基於產品”的推薦程序可以很好的減小計算量。
其實基本的思想很簡單:
首先讀入數據,形成用戶-電影矩陣,如圖所示:矩陣中的數據為用戶(橫坐標)對特定電影(縱坐標)的評分。
其次根據用戶-電影矩陣計算不同電影之間的相關系數(一般用person相關系數),形成電影-電影相關度矩陣。
其次根據電影-電影相關度矩陣,以及用戶已有的評分,通過加權平均計算用戶未評分電影的預估評分。例如用戶對A電影評3分、B電影評4分、C電影未評分,而C電影與A電影、B電影的相關度分別為0.3和0.8,則C電影的預估評分為(0.3*3+0.8*4)/(0.3+0.8)。
最后對於每一位用戶,提取其未評分的電影並按預估評分值倒序排列,提取前n位的電影作為推薦電影。
以下為程序源代碼,大塊的注釋還是比較詳細的,便於理解各個模塊的作用。此外,程序用到了pandas和numpy庫,實現起來會比較簡潔,因為許多功能如計算相關系數、排序等功能在這些庫中已有實現,直接拿來用即可。
- import pandas as pd
- import numpy as np
- #read the data
- data={'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
- 'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5},
- 'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5,
- 'Just My Luck': 1.5, 'The Night Listener': 3.0},
- 'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0,
- 'Superman Returns': 3.5, 'The Night Listener': 4.0},
- 'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,
- 'The Night Listener': 4.5, 'You, Me and Dupree': 2.5},
- 'Mick LaSalle': {'Just My Luck': 2.0, 'Lady in the Water': 3.0,'Superman Returns': 3.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 2.0},
- 'Jack Matthews': {'Snakes on a Plane': 4.0, 'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},
- 'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}}
- #clean&transform the data
- data = pd.DataFrame(data)
- #0 represents not been rated
- data = data.fillna(0)
- #each column represents a movie
- mdata = data.T
- #calculate the simularity of different movies, normalize the data into [0,1]
- np.set_printoptions(3)
- mcors = np.corrcoef(mdata, rowvar=0)
- mcors = 0.5+mcors*0.5
- mcors = pd.DataFrame(mcors, columns=mdata.columns, index=mdata.columns)
- #calculate the score of every item of every user
- #matrix:the user-movie matrix
- #mcors:the movie-movie correlation matrix
- #item:the movie id
- #user:the user id
- #score:score of movie for the specific user
- def cal_score(matrix,mcors,item,user):
- totscore = 0
- totsims = 0
- score = 0
- if pd.isnull(matrix[item][user]) or matrix[item][user]==0:
- for mitem in matrix.columns:
- if matrix[mitem][user]==0:
- continue
- else:
- totscore += matrix[mitem][user]*mcors[item][mitem]
- totsims += mcors[item][mitem]
- score = totscore/totsims
- else:
- score = matrix[item][user]
- return score
- #calculate the socre matrix
- #matrix:the user-movie matrix
- #mcors:the movie-movie correlation matrix
- #score_matrix:score matrix of movie for different users
- def cal_matscore(matrix,mcors):
- score_matrix = np.zeros(matrix.shape)
- score_matrix = pd.DataFrame(score_matrix, columns=matrix.columns, index=matrix.index)
- for mitem in score_matrix.columns:
- for muser in score_matrix.index:
- score_matrix[mitem][muser] = cal_score(matrix,mcors,mitem,muser)
- return score_matrix
- #give recommendations: depending on the score matrix
- #matrix:the user-movie matrix
- #score_matrix:score matrix of movie for different users
- #user:the user id
- #n:the number of recommendations
- def recommend(matrix,score_matrix,user,n):
- user_ratings = matrix.ix[user]
- not_rated_item = user_ratings[user_ratings==0]
- recom_items = {}
- #recom_items={'a':1,'b':7,'c':3}
- for item in not_rated_item.index:
- recom_items[item] = score_matrix[item][user]
- recom_items = pd.Series(recom_items)
- recom_items = recom_items.sort_values(ascending=False)
- return recom_items[:n]
- #main
- score_matrix = cal_matscore(mdata,mcors)
- for i in range(10):
- user = input(str(i)+' please input the name of user:')
- print recommend(mdata,score_matrix,user,2)