三 Hive 數據處理 自定義函數UDF和Transform


三  Hive 自定義函數UDF和Transform

 

開篇提示:

 快速鏈接beeline的方式:

./beeline -u jdbc:hive2://hadoop1:10000 -n hadoop

 

1.自定義函數UDF

  當Hive提供的內置函數無法滿足你的業務處理需要時,此時就可以考慮使用用戶自定義函數(UDF:user-defined function)

  UDF  作用於單個數據行,產生一個數據行作為輸出。(數學函數,字符串函數)

2開發實例

  2.1 原始數據格式

{"movie":"1193","rate":"5","timeStamp":"978300760","uid":"1"}
{"movie":"661","rate":"3","timeStamp":"978302109","uid":"1"}
{"movie":"914","rate":"3","timeStamp":"978301968","uid":"1"}
{"movie":"3408","rate":"4","timeStamp":"978300275","uid":"1"}
{"movie":"2355","rate":"5","timeStamp":"978824291","uid":"1"}
{"movie":"1197","rate":"3","timeStamp":"978302268","uid":"1"}
{"movie":"1287","rate":"5","timeStamp":"978302039","uid":"1"}
{"movie":"2804","rate":"5","timeStamp":"978300719","uid":"1"}
{"movie":"594","rate":"4","timeStamp":"978302268","uid":"1"}
{"movie":"919","rate":"4","timeStamp":"978301368","uid":"1"}
{"movie":"595","rate":"5","timeStamp":"978824268","uid":"1"}
{"movie":"938","rate":"4","timeStamp":"978301752","uid":"1"}

   2.2 創建數據表

create table t_rating (line string)
row format delimited;

  2.3 導入數據

load data local inpath '/home/hadoop/rating.json' into table t_rating;

  2.4 開發UDF程序

package cn.itcast.hive;

import org.apache.hadoop.hive.ql.exec.UDF;
import org.codehaus.jackson.map.ObjectMapper;

/**
 * @author ntjr
 * 解析json數據
 *
 */
public class PaserJson extends UDF {
    private ObjectMapper mapper = new ObjectMapper();

    public String evaluate(String line) {

        try {
            RatingBean ratingBean = mapper.readValue(line, RatingBean.class);
            return ratingBean.toString();
        } catch (Exception e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
        return "";
    }
}

  用於解析t_rating表中每一行的json數據。

package cn.itcast.hive;

public class RatingBean {
    private String movie;
    private String rate;
    private String timeStamp;
    private String uid;

    public String getMovie() {
        return movie;
    }

    public void setMovie(String movie) {
        this.movie = movie;
    }

    public String getRate() {
        return rate;
    }

    public void setRate(String rate) {
        this.rate = rate;
    }

    public String getTimeStamp() {
        return timeStamp;
    }

    public void setTimeStamp(String timeStamp) {
        this.timeStamp = timeStamp;
    }

    public String getUid() {
        return uid;
    }

    public void setUid(String uid) {
        this.uid = uid;
    }

    @Override
    public String toString() {
        return movie + "\t" + rate + "\t" + timeStamp + "\t" + uid;
    }

}

  2.4將udf程序打成jar 導入hive

add JAR /home/hadoop/udf.jar;

  2.5 創建臨時函數與開發好的udf進行關聯 

create temporary function paseJson as 'cn.itcast.hive.PaserJson';

  2.6 創建完整字段的t_rating02表(用於存放將單列json數據表t_rating轉換成多列數據表t_rating02的結果)  

create table t_rating02 as
select split(paseJson(line),'\t')[0] as movieid,
split(paseJson(line),'\t')[1] as rate,
split(paseJson(line),'\t')[2] as timestring,
split(paseJson(line),'\t')[3] as uid
from t_rating;

  至此:完成字段表t_rating02轉換完成。

3.利用Transfrom將t_rating02表中的timestring字段轉換成周幾的形式。

  3.1 t_rating02中的樣式:

  

  3.2編寫weekday_mapper.py腳本,處理t_rating02表中的timestring字段 

#!/bin/python
import sys
import datetime

for line in sys.stdin:
  line = line.strip()
  movieid, rating, unixtime,userid = line.split('\t')
  weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday()
  print '\t'.join([movieid, rating, str(weekday),userid])

  3.3 上傳weekday_mapper.py腳本,前提是保證本機裝有python 

add FILE weekday_mapper.py;

  3.4 創建新表t_rating_date,保存腳本處理后的數據 

create TABLE t_rating_date as
SELECT
  TRANSFORM (movieid , rate, timestring,uid)
  USING 'python weekday_mapper.py'
  AS (movieid, rating, weekday,userid)
FROM t_rating02;

   3.5查看t_rating_date表

  

  至此將json數據轉換成數據表。

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM