36.Linux驅動調試-根據oops定位錯誤代碼行


1.當驅動有誤時,比如,訪問的內存地址是非法的,便會打印一大串的oops出來

1.1以LED驅動為例

將open()函數里的ioremap()屏蔽掉,直接使用物理地址的GPIOF,如下圖所示:

 

1.2然后編譯裝載26th_segmentfault並執行測試程序后,內核便打印了oops出來,如下圖所示:

 

 

2.接下來,我們便來分析oops:

Unable to handle kernel paging request at virtual address 56000050
      //無法處理內核頁面請求的虛擬地址56000050

pgd = c3850000
[56000050] *pgd=00000000

Internal error: Oops: 5 [#1]
        //內部錯誤oops

Modules linked in: 26th_segmentfault
        //表示內部錯誤發生在26th_segmentfault.ko驅動模塊里

CPU: 0    Not tainted  (2.6.22.6 #2)
PC is at first_drv_open+0x78/0x12c [26th_segmentfault]
        //PC值:程序運行成功的最后一次地址,位於first_drv_open()函數里,偏移值0x78,該函數總大小0x12c

LR is at 0xc0365ed8             //LR值

/*發生錯誤時的各個寄存器值*/
pc : [<bf000078>]    lr : [<c0365ed8>]    psr: 80000013
sp : c3fcbe80  ip : c0365ed8  fp : c3fcbe94
r10: 00000000  r9 : c3fca000  r8 : c04df960
r7 : 00000000  r6 : 00000000  r5 : bf000de4  r4 : 00000000
r3 : 00000000  r2 : 56000050  r1 : 00000001  r0 : 00000052

Flags: Nzcv  IRQs on  FIQs on  Mode SVC_32  Segment user
Control: c000717f  Table: 33850000  DAC: 00000015
Process 26th_segmentfau (pid: 813, stack limit = 0xc3fca258)
            //發生錯誤時,進程名稱為26th_segmentfault

Stack: (0xc3fcbe80 to 0xc3fcc000)                     //棧信息
be80: c06d7660 c3e880c0 c3fcbebc c3fcbe98 c008d888 bf000010 00000000 c04df960
bea0: c3e880c0 c008d73c c0474e20 c3fb9534 c3fcbee4 c3fcbec0 c0089e48 c008d74c
bec0: c04df960 c3fcbf04 00000003 ffffff9c c002c044 c380a000 c3fcbefc c3fcbee8
bee0: c0089f64 c0089d58 00000000 00000002 c3fcbf68 c3fcbf00 c0089fb8 c0089f40
bf00: c3fcbf04 c3fb9534 c0474e20 00000000 00000000 c3851000 00000101 00000001
bf20: 00000000 c3fca000 c04c90a8 c04c90a0 ffffffe8 c380a000 c3fcbf68 c3fcbf48
bf40: c008a16c c009fc70 00000003 00000000 c04df960 00000002 be84ce38 c3fcbf94
bf60: c3fcbf6c c008a2f4 c0089f88 00008588 be84ce84 00008718 0000877c 00000005
bf80: c002c044 4013365c c3fcbfa4 c3fcbf98 c008a3a8 c008a2b0 00000000 c3fcbfa8
bfa0: c002bea0 c008a394 be84ce84 00008718 be84ce30 00000002 be84ce38 be84ce30
bfc0: be84ce84 00008718 0000877c 00000003 00008588 00000000 4013365c be84ce58
bfe0: 00000000 be84ce28 0000266c 400c98e0 60000010 be84ce30 30002031 30002431

Backtrace:                                        //回溯信息
[<bf000000>] (first_drv_open+0x0/0x12c [26th_segmentfault]) from [<c008d888>] (chrdev_open+0x14c/0x164)
 r5:c3e880c0 r4:c06d7660
[<c008d73c>] (chrdev_open+0x0/0x164) from [<c0089e48>] (__dentry_open+0x100/0x1e8)
 r8:c3fb9534 r7:c0474e20 r6:c008d73c r5:c3e880c0 r4:c04df960
[<c0089d48>] (__dentry_open+0x0/0x1e8) from [<c0089f64>] (nameidata_to_filp+0x34/0x48)
[<c0089f30>] (nameidata_to_filp+0x0/0x48) from [<c0089fb8>] (do_filp_open+0x40/0x48)
 r4:00000002
[<c0089f78>] (do_filp_open+0x0/0x48) from [<c008a2f4>] (do_sys_open+0x54/0xe4)
 r5:be84ce38 r4:00000002
[<c008a2a0>] (do_sys_open+0x0/0xe4) from [<c008a3a8>] (sys_open+0x24/0x28)
[<c008a384>] (sys_open+0x0/0x28) from [<c002bea0>] (ret_fast_syscall+0x0/0x2c)
Code: bf000094 bf0000b4 bf0000d4 e5952000 (e5923000)
Segmentation fault

2.1上面的回溯信息,表示了函數的整個調用過程

比如上面的回溯信息表示:

  • sys_open()->do_sys_open()->do_filp_open()->nameidata_to_filp()->chrdev_open()->first_drv_open();

最終錯誤出在了first_drv_open();

 若內核沒有配置回溯信息顯示,則就不會打印函數調用過程,可以修改內核的.config文件,添加:

 //CONFIG_FRAME_POINTER,表示幀指針,用fp寄存器表示

 內核里,就會通過fp寄存器記錄函數的運行位置,並存到棧里,然后當出問題時,從棧里調出fp寄存器,查看函數的調用關系,就可以看到回溯信息.

(PS:若不配置,也可以直接通過棧來分析函數調用過程,在下章會分析到:http://www.cnblogs.com/lifexy/p/8011966.html)

2.2而有些內核的環境不同,opps也可能不會打印出上面的:

Modules linked in: 26th_segmentfault
PC is at first_drv_open+0x78/0x12c [26th_segmentfault]

這些相關信息, 只打印PC值,就根本無法知道,到底是驅動模塊出的問題,還是內核自帶的函數出的問題? 

所以oops里的最重要內容還是這一段: pc : [<bf000078>]

 

2.3那么如何來確定,該PC值地址位於內核的函數,還是我們裝載的驅動模塊?

答:

可以在內核源碼的根目錄下通過的“vi System.map”來查看,該文件保存了內核里所有(符號、函數)的虛擬地址映射,比如下圖的內核函數root_dev_setup():

 

通過vi命令的:0和:$命令行,可以看到內核的虛擬地址是c0004000~c03cebf4

所以,pc值bf000078為的驅動模塊的地址值 

 

2.4當有多個驅動裝載時,又如何區分PC值是哪個驅動的函數的地址值?

答:通過/proc/kallsyms來查看:

#cat /proc/kallsyms  //(kernel all symbols)查看所有的內核標號(包括內核函數,裝載的驅動函數,變量符號等)的地址值

或者:

#cat  /proc/kallsyms> /kallsyms.txt    //將地址值放入kallsyms.txt中

如下圖所示,在kallsyms.txt里,找到pc值bf000078位於26th_segmentfault驅動里first_drv_open()函數下的bf000000+0x78

 

2.5然后將驅動生成反匯編:

arm-linux-objdump -D 26th_segmentfault.ko >26th_segmentfault.dis //反匯編

 

2.6打開反匯編:

如下圖所示,左邊是kallsyms.txt,右邊是26th_segmentfault.dis反匯編

 

顯然pc值bf000078,就位於反匯編的78地址處:

Disassembly of section .text:         //.text段起始地址為0x00
00000000 <first_drv_open>:

38: e59fc0e8   ldr   ip, [pc, #232]; 128 <.text+0x128> //ip=.text段+0x128里的內容
... ...

50: e585c000   str   ip, [r5]       //r5=.text段+0x128里的內容
... ...

74: e5952000   ldr   r2, [r5]           //r2=.text段+0x128里的內容
78: e5923000   ldr   r3, [r2]                  // r3=.text段+0x128里的內容
7c: e3c33c3f   bic   r3,  r3,   #16128    ;0x3f00  //清除0x56000050的bit8~13
... ...

128:  56000050  undefined                //.text段+0x128里的內容=0x56000050

從上面看到,78地址處,主要是將0x56000050(r2)地址里的內容放入r3中.

0x56000050是個物理地址,在linux眼中便是個非法地址,所以出錯

並找到出錯地方位於first_drv_open ()函數下:

 

3.若發生錯誤的驅動位於內核的地址值時

3.1還是以26th_segmentfault.c為例,首先加入內核:

#cp 26th_segmentfault.c   /linux-2.6.22.6/drivers/char/  //將有問題的驅動復制到字符驅動目錄下

 

#vi Makefile

添加:

obj-y    += 26th_segmentfault.o                            //y:將該驅動放入內核中

 

3.2然后make uImage裝載新內核后,再運行測試程序,便會打印出opps信息

3.3在內核源碼的根目錄下通過:

# arm-none-linux-gnueabi-objdump -D vmlinux > vmlinux.dis

將整個內核反匯編, vmlinux:未壓縮的內核

3.4 vi vmlinux.dis,然后通過oops信息的PC值直接來查找地址即可

 

接下來下章便通過信息來分析函數調用過程:http://www.cnblogs.com/lifexy/p/8011966.html

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM