基於Hadoop2.7.3集群數據倉庫Hive1.2.2的部署及使用
HBase是一種分布式、面向列的NoSQL數據庫,基於HDFS存儲,以表的形式存儲數據,表由行和列組成,列划分到列族中。HBase不提供類SQL查詢語言,要想像SQL這樣查詢數據,可以使用Phonix,讓SQL查詢轉換成hbase的掃描和對應的操作,也可以使用現在說講Hive倉庫工具,讓HBase作為Hive存儲。
Hive是運行在Hadoop之上的數據倉庫,將結構化的數據文件映射為一張數據庫表,提供簡單類SQL查詢語言,稱為HQL,並將SQL語句轉換成MapReduce任務運算。有利於利用SQL語言查詢、分析數據,適於處理不頻繁變動的數據。Hive底層可以是HBase或者HDFS存儲的文件。
兩者都是基於Hadoop上不同的技術,相互結合使用,可處理企業中不同類型的業務,利用Hive處理非結構化離線分析統計,利用HBase處理在線查詢。
1.安裝hive通過二進制包安裝
下載地址:http://mirrors.shuosc.org/apache/hive/stable/apache-hive-1.2.2-bin.tar.gz
tar -zxf apache-hive-1.2.2-bin.tar.gz
配置環境變量
# vi /etc/profile HIVE_HOME=/data/yunva/apache-hive-1.2.2-bin PATH=$PATH:$HIVE_HOME/bin export HIVE_NAME PATH # source /etc/profile
2.安裝mysql,存儲hive相關的信息(此處因為資源使用問題,mysql安裝在了另外的服務器中)
# yum install -y mariadb mariadb-server # systemctl start mariadb
在MySQL創建Hive元數據存放庫和連接用戶
mysql>create database hive; mysql>grant all on *.* to'hive'@'%' identified by 'hive'; mysql>flush privileges;
3.配置hive
cd /data/yunva/apache-hive-1.2.2-bin/conf cp hive-default.xml.template hive-default.xml
配置hive連接mysql的信息
# vim hive-site.xml
<?xml version="1.0" encoding="UTF-8" standalone="no"?> <?xml-stylesheet type="text/xsl" href="configuration.xsl"?> <configuration> <property> <name>javax.jdo.option.ConnectionURL</name> <value>jdbc:mysql://10.10.11.214:3306/hive?createDatabaseIfNotExist=true</value> <description>JDBC connect string for a JDBC metastore</description> </property> <property> <name>javax.jdo.option.ConnectionDriverName</name> <value>com.mysql.jdbc.Driver</value> <description>Driver class name for a JDBC metastore</description> </property> <property> <name>javax.jdo.option.ConnectionUserName</name> <value>hive</value> <description>username to use against metastore database</description> </property> <property> <name>javax.jdo.option.ConnectionPassword</name> <value>hive</value> <description>password to use against metastore database</description> </property> </configuration>
4.安裝java連接mysql的驅動
下載地址:https://cdn.mysql.com//Downloads/Connector-J/mysql-connector-java-5.1.45.tar.gz
將解壓的mysql-connector-java-5.1.45-bin.jar放到/data/yunva/apache-hive-1.2.2-bin/lib目錄
5.啟動Hive服務
# hive --service metastore & [root@test3 apache-hive-1.2.2-bin]# ps -ef|grep hive root 4302 3176 99 14:09 pts/0 00:00:06 /usr/java/jdk1.8.0_65/bin/java -Xmx256m -Djava.net.preferIPv4Stack=true -Dhadoop.log.dir=/data/yunva/hadoop-2.7.3/logs -Dhadoop.log.file=hadoop.log -Dhadoop.home.dir=/data/yunva/hadoop-2.7.3 -Dhadoop.id.str=root -Dhadoop.root.logger=INFO,console -Dhadoop.policy.file=hadoop-policy.xml -Djava.net.preferIPv4Stack=true -Xmx512m -Dhadoop.security.logger=INFO,NullAppender org.apache.hadoop.util.RunJar /data/yunva/apache-hive-1.2.2-bin/lib/hive-service-1.2.2.jar org.apache.hadoop.hive.metastore.HiveMetaStore root 4415 3176 0 14:09 pts/0 00:00:00 grep hive [root@test3 apache-hive-1.2.2-bin]# jps 15445 HRegionServer 4428 Jps 4302 RunJa # hive會啟動叫做RunJa的程序
客戶端配置,需要集成Hadoop環境
scp -P 48490 -r apache-hive-1.2.2-bin 10.10.114.112:/data/yunva
配置環境變量:
vim /etc/profile
# hive client
HIVE_HOME=/data/yunva/apache-hive-1.2.2-bin
PATH=$PATH:$HIVE_HOME/bin
export HIVE_NAME PATH
# vi hive-site.xml(或者直接使用原有配置不變,此時hive就有兩個服務端了)
<configuration> <!--通過thrift方式連接hive--> <property> <name>hive.metastore.uris</name> <value>thrift://hive_server_ip:9083</value> </property> </configuration>
簡單測試:
執行hive命令會進入命令界面:
[root@test3 apache-hive-1.2.2-bin]# hive Logging initialized using configuration in jar:file:/data/yunva/apache-hive-1.2.2-bin/lib/hive-common-1.2.2.jar!/hive-log4j.properties hive> show databases; OK default Time taken: 1.158 seconds, Fetched: 1 row(s) hive> create database yunvatest; hive> use yunvatest; OK Time taken: 0.021 seconds hive> show databases; OK default yunvatest Time taken: 0.225 seconds, Fetched: 2 row(s) hive> create table table_test(id string,name string); OK Time taken: 0.417 seconds hive> show tables; OK table_test Time taken: 0.033 seconds, Fetched: 1 row(s)
6.Hive常用SQL命令
6.1先創建一個測試庫
hive> create database test;
hive> use test;
創建tb1表,並指定字段分隔符為tab鍵(否則會插入NULL)
hive> create table tb1(id int,name string) row format delimited fields terminated by '\t';
如果想再創建一個表,而且表結構和tb1一樣,可以這樣:
hive> create table table2 like tb1;
查看下表結構:
hive> describe table2;
OK
id int
name string
Time taken: 0.126 seconds, Fetched: 2 row(s)
6.2從本地文件中導入數據到Hive表
先創建數據文件,鍵值要以tab鍵空格:
# cat seasons.txt 1 spring 2 summer 3 autumn 4 winter
再導入數據:
hive> load data local inpath'/root/seasons.txt' overwrite into table tb1;
查詢是否導入成功
hive> select * from tb1; OK 1 spring 2 summer 3 autumn 4 winter
6.3從HDFS中導入數據到Hive表:
列出hdfs文件系統根目錄下的目錄
hadoop fs -ls /
創建test根目錄
hadoop fs -mkdir /test
put 命令向/test目錄寫入文件為siji.txt
hadoop fs -put /root/seasons.txt /test/siji.txt
查看siji.txt文件內容
# hadoop fs -cat /test/siji.txt 17/12/06 14:54:34 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 1 spring 2 summer 3 autumn 4 winte
hive> load data inpath '/test/siji.txt' overwrite into table table2;
Loading data to table test.table2
Table test.table2 stats: [numFiles=1, numRows=0, totalSize=36, rawDataSize=0]
OK
Time taken: 0.336 seconds
查詢是否導入成功
hive> select * from table2; OK 1 spring 2 summer 3 autumn 4 winter Time taken: 0.074 seconds, Fetched: 4 row(s)
6.4上面是基本表的簡單操作,為了提高處理性能,Hive引入了分區機制,那我們就了解分區表概念:
1>.分區表是在創建表時指定的分區空間
2>.一個表可以有一個或多個分區,意思把數據划分成塊
3>.分區以字段的形式在表結構中,不存放實際數據內容
分區表優點:將表中數據根據條件分配到不同的分區中,縮小查詢范圍,提高檢索速度和處理性能
6.5單分區表:
創建單分區表tb2(HDFS表目錄下只有一級目錄):
hive> create table tb2(id int,name string) partitioned by (dt string) row format delimited fields terminated by '\t';
注:dt可以理解為分區名稱。
從文件中把數據導入到Hive分區表,並定義分區信息(需要已經存在的表)
hive> load data local inpath '/root/seasons.txt' into table tb2 partition (dt='2017-12-06');
hive> load data local inpath '/root/seasons.txt' into table tb2 partition (dt='2017-12-07');
查看表數據
hive> select * from tb2; OK 1 spring 2017-12-06 2 summer 2017-12-06 3 autumn 2017-12-06 4 winter 2017-12-06 1 spring 2017-12-07 2 summer 2017-12-07 3 autumn 2017-12-07 4 winter 2017-12-07 Time taken: 0.086 seconds, Fetched: 8 row(s)
查看HDFS倉庫中表目錄變化
[root@test4_haili_dev ~]# hadoop fs -ls -R /user/hive/warehouse/test.db/tb2 17/12/06 15:09:58 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable drwxrwxrwx - root supergroup 0 2017-12-06 15:07 /user/hive/warehouse/test.db/tb2/dt=2017-12-06 -rwxrwxrwx 3 root supergroup 36 2017-12-06 15:07 /user/hive/warehouse/test.db/tb2/dt=2017-12-06/seasons.txt drwxrwxrwx - root supergroup 0 2017-12-06 15:07 /user/hive/warehouse/test.db/tb2/dt=2017-12-07 -rwxrwxrwx 3 root supergroup 36 2017-12-06 15:07 /user/hive/warehouse/test.db/tb2/dt=2017-12-07/seasons.txt
可以看到tb2表導入的數據根據日期將數據划分到不同目錄下
6.6多分區表:
創建多分區表tb3(HDFS表目錄下有一級目錄,一級目錄下再有子級目錄)
hive> create table table3(id int,name string) partitioned by (dt string,location string) row format delimited fields terminated by '\t';
從文件中把數據導入到Hive分區表,並定義分區信息
hive> load data local inpath '/root/seasons.txt' into table table3 partition (dt='2017-12-06',location='guangzhou');
hive> load data local inpath '/root/seasons.txt' into table table3 partition (dt='2017-12-07',location='shenzhen');
查看表數據
hive> select * from table3; OK 1 spring 2017-12-06 guangzhou 2 summer 2017-12-06 guangzhou 3 autumn 2017-12-06 guangzhou 4 winter 2017-12-06 guangzhou 1 spring 2017-12-07 shenzhen 2 summer 2017-12-07 shenzhen 3 autumn 2017-12-07 shenzhen 4 winter 2017-12-07 shenzhen
查看HDFS倉庫中表目錄變化
[root@test3 yunva]# hadoop fs -ls -R /user/hive/warehouse/test.db/table3 17/12/06 15:22:27 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable drwxrwxrwx - root supergroup 0 2017-12-06 15:19 /user/hive/warehouse/test.db/table3/dt=2017-12-06 drwxrwxrwx - root supergroup 0 2017-12-06 15:19 /user/hive/warehouse/test.db/table3/dt=2017-12-06/location=guangzhou -rwxrwxrwx 3 root supergroup 36 2017-12-06 15:19 /user/hive/warehouse/test.db/table3/dt=2017-12-06/location=guangzhou/seasons.txt drwxrwxrwx - root supergroup 0 2017-12-06 15:20 /user/hive/warehouse/test.db/table3/dt=2017-12-07 drwxrwxrwx - root supergroup 0 2017-12-06 15:20 /user/hive/warehouse/test.db/table3/dt=2017-12-07/location=shenzhen -rwxrwxrwx 3 root supergroup 36 2017-12-06 15:20 /user/hive/warehouse/test.db/table3/dt=2017-12-07/location=shenzhen/seasons.txt
可以看到表中一級dt分區目錄下又分成了location分區。
查看表分區信息
hive> show partitions table3;
OK
dt=2017-12-06/location=guangzhou
dt=2017-12-07/location=shenzhen
Time taken: 0.073 seconds, Fetched: 2 row(s)
根據分區查詢數據
hive> select name from table3 where dt='2017-12-06';
OK
spring
summer
autumn
winter
Time taken: 0.312 seconds, Fetched: 4 row(s)
重命名分區
hive> alter table table3 partition (dt='2017-12-06',location='guangzhou') rename to partition(dt='20171206',location='shanghai');
刪除分區
hive> alter table table3 drop partition(dt='2017-12-06',location='guangzhou');
OK
Time taken: 0.113 seconds
可以看到已經查不出來了
hive> select name from table3 where dt='2017-12-06';
OK
Time taken: 0.078 seconds
模糊搜索表
hive> show tables 'tb*';
OK
tb1
tb2
給表新添加一列
hive> alter table tb1 add columns (comment string); OK Time taken: 0.106 seconds hive> describe tb1; OK id int name string comment string Time taken: 0.079 seconds, Fetched: 3 row(s)
重命名表
hive> alter table tb1 rename to new_tb1;
OK
Time taken: 0.095 seconds
hive> show tables;
OK
new_tb1
table2
table3
tb2
刪除表
hive> drop table new_tb1;
OK
Time taken: 0.094 seconds
hive> show tables;
OK
table2
table3
tb2