HMM XSS檢測
轉自:http://www.freebuf.com/articles/web/133909.html前言
上篇我們介紹了HMM的基本原理以及常見的基於參數的異常檢測實現,這次我們換個思路,把機器當一個剛入行的白帽子,我們訓練他學會XSS的攻擊語法,然后再讓機器從訪問日志中尋找符合攻擊語法的疑似攻擊日志。
通過詞法分割,可以把攻擊載荷序列化成觀察序列,舉例如下:
詞集/詞袋模型
詞集和詞袋模型是機器學習中非常常用的一個數據處理模型,它們用於特征化字符串型數據。一般思路是將樣本分詞后,統計每個詞的頻率,即詞頻,根據需要選擇全部或者部分詞作為哈希表鍵值,並依次對該哈希表編號,這樣就可以使用該哈希表對字符串進行編碼。
- 詞集模型:單詞構成的集合,集合自然每個元素都只有一個,也即詞集中的每個單詞都只有一個
- 詞袋模型:如果一個單詞在文檔中出現不止一次,並統計其出現的次數
本章使用詞集模型即可。
假設存在如下數據集合:
dataset = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
首先生成詞匯表:
vocabSet = set() for doc in dataset: vocabSet |= set(doc) vocabList = list(vocabSet)
根據詞匯表生成詞集:
# 詞集模型 SOW = [] for doc in dataset: vec = [0]*len(vocabList) for i, word in enumerate(vocabList): if word in doc: vec[i] = 1 SOW.append(doc)
簡化后的詞集模型的核心代碼如下:
fredist = nltk.FreqDist(tokens_list) # 單文件詞頻 keys=fredist.keys() keys=keys[:max] #只提取前N個頻發使用的單詞 其余泛化成0 for localkey in keys: # 獲取統計后的不重復詞集 if localkey in wordbag.keys(): # 判斷該詞是否已在詞集中 continue else: wordbag[localkey] = index_wordbag index_wordbag += 1
數據處理與特征提取
常見的XSS攻擊載荷列舉如下:
<script>alert('XSS')</script> %3cscript%3ealert('XSS')%3c/script%3e %22%3e%3cscript%3ealert('XSS')%3c/script%3e <IMG SRC="javascript:alert('XSS');"> <IMG SRC=javascript:alert("XSS")> <IMG SRC=javascript:alert('XSS')> <img src=xss onerror=alert(1)> <IMG """><SCRIPT>alert("XSS")</SCRIPT>"> <IMG SRC=javascript:alert(String.fromCharCode(88,83,83))> <IMG SRC="jav ascript:alert('XSS');"> <IMG SRC="jav ascript:alert('XSS');"> <BODY BACKGROUND="javascript:alert('XSS')"> <BODY ONLOAD=alert('XSS')>
需要支持的詞法切分原則為:
單雙引號包含的內容 ‘XSS’
http/https鏈接 http://xi.baidu.com/xss.js
<>標簽 <script>
<>標簽開頭 <BODY
屬性標簽 ONLOAD=
<>標簽結尾 >
函數體 “javascript:alert(‘XSS’);”
字符數字標量 代碼實現舉例如下:
tokens_pattern = r'''(?x) "[^"]+" |http://\S+ |</\w+> |<\w+> |<\w+ |\w+= |> |\w+\([^<]+\) #函數 比如alert(String.fromCharCode(88,83,83)) |\w+ ''' words=nltk.regexp_tokenize(line, tokens_pattern)
另外,為了減少向量空間,需要把數字和字符以及超鏈接范化,具體原則為:
#數字常量替換成8 line, number = re.subn(r'\d+', "8", line) #ulr日換成http://u line, number = re.subn(r'(http|https)://[a-zA-Z0-9\.@&/#!#\?]+', "http://u", line) #干掉注釋 line, number = re.subn(r'\/\*.?\*\/', "", line) 范化后分詞效果示例為: #原始參數值:"><img src=x onerror=prompt(0)>) #分詞后: ['>', '<img', 'src=', 'x', 'onerror=', 'prompt(8)', '>']
#原始參數值:<iframe src="x-javascript:alert(document.domain);"></iframe>) #分詞后: ['<iframe', 'src=', '"x-javascript:alert(document.domain);"', '>', '</iframe>'] #原始參數值:<marquee><h1>XSS by xss</h1></marquee> ) #分詞后: ['<marquee>', '<h8>', 'XSS', 'by', 'xss', '</h8>', '</marquee>'] #原始參數值:<script>-=alert;-(1)</script> "onmouseover="confirm(document.domain);"" </script>) #分詞后: ['<script>', 'alert', '8', '</script>', '"onmouseover="', 'confirm(document.domain)', '</script>'] #原始參數值:<script>alert(2)</script> "><img src=x onerror=prompt(document.domain)>) #分詞后: ['<script>', 'alert(8)', '</script>', '>', '<img', 'src=', 'x', 'onerror=', 'prompt(document.domain)', '>']
結合詞集模型,完整的流程舉例如下:
訓練模型
將范化后的向量X以及對應的長度矩陣X_lens輸入即可,需要X_lens的原因是參數樣本的長度可能不一致,所以需要單獨輸入。
remodel = hmm.GaussianHMM(n_components=3, covariance_type="full", n_iter=100) remodel.fit(X,X_lens)
驗證模型
整個系統運行過程如下:
驗證階段利用訓練出來的HMM模型,輸入觀察序列獲取概率,從而判斷觀察序列的合法性,訓練樣本是1000條典型的XSS攻擊日志,通過分詞、計算詞集,提煉出200個特征,全部樣本就用這200個特征進行編碼並序列化,使用20000條正常日志和20000條XSS攻擊識別(類似JSFUCK這類編碼的暫時不支持),准確率達到90%以上,其中驗證環節的核心代碼如下:
with open(filename) as f: for line in f: line = line.strip('\n') line = urllib.unquote(line) h = HTMLParser.HTMLParser() line = h.unescape(line) if len(line) >= MIN_LEN: line, number = re.subn(r'\d+', "8", line) line, number = re.subn(r'(http|https)://[a-zA-Z0-9\.@&/#!#\?:]+', "http://u", line) line, number = re.subn(r'\/\*.?\*\/', "", line) words = do_str(line) vers = [] for word in words: if word in wordbag.keys(): vers.append([wordbag[word]]) else: vers.append([-1]) np_vers = np.array(vers) pro = remodel.score(np_vers) if pro >= T: print "SCORE:(%d) XSS_URL:(%s) " % (pro,line)
較完整的代碼如下:
# -*- coding:utf-8 -*- import sys import urllib import urlparse import re from hmmlearn import hmm import numpy as np from sklearn.externals import joblib import HTMLParser import nltk #處理參數值的最小長度 MIN_LEN=10 #狀態個數 N=5 #最大似然概率閾值 T=-200 #字母 #數字 1 #<>,:"' #其他字符2 SEN=['<','>',',',':','\'','/',';','"','{','}','(',')'] index_wordbag=1 #詞袋索引 wordbag={} #詞袋 #</script><script>alert(String.fromCharCode(88,83,83))</script> #<IMG SRC=x onchange="alert(String.fromCharCode(88,83,83))"> #<;IFRAME SRC=http://ha.ckers.org/scriptlet.html <; #';alert(String.fromCharCode(88,83,83))//\';alert(String.fromCharCode(88,83,83))//";alert(String.fromCharCode(88,83,83)) # //\";alert(String.fromCharCode(88,83,83))//--></SCRIPT>">'><SCRIPT>alert(String.fromCharCode(88,83,83))</SCRIPT> tokens_pattern = r'''(?x) "[^"]+" |http://\S+ |</\w+> |<\w+> |<\w+ |\w+= |> |\w+\([^<]+\) #函數 比如alert(String.fromCharCode(88,83,83)) |\w+ ''' def ischeck(str): if re.match(r'^(http)',str): return False for i, c in enumerate(str): if ord(c) > 127 or ord(c) < 31: return False if c in SEN: return True #排除中文干擾 只處理127以內的字符 return False def do_str(line): words=nltk.regexp_tokenize(line, tokens_pattern) #print words return words def load_wordbag(filename,max=100): X = [[0]] X_lens = [1] tokens_list=[] global wordbag global index_wordbag with open(filename) as f: for line in f: line=line.strip('\n') #url解碼 line=urllib.unquote(line) #處理html轉義字符 h = HTMLParser.HTMLParser() line=h.unescape(line) if len(line) >= MIN_LEN: #print "Learning xss query param:(%s)" % line #數字常量替換成8 line, number = re.subn(r'\d+', "8", line) #ulr日換成http://u line, number = re.subn(r'(http|https)://[a-zA-Z0-9\.@&/#!#\?:=]+', "http://u", line) #干掉注釋 line, number = re.subn(r'\/\*.?\*\/', "", line) #print "Learning xss query etl param:(%s) " % line tokens_list+=do_str(line) #X=np.concatenate( [X,vers]) #X_lens.append(len(vers)) fredist = nltk.FreqDist(tokens_list) # 單文件詞頻 keys=fredist.keys() keys=keys[:max] for localkey in keys: # 獲取統計后的不重復詞集 if localkey in wordbag.keys(): # 判斷該詞是否已在詞袋中 continue else: wordbag[localkey] = index_wordbag index_wordbag += 1 print "GET wordbag size(%d)" % index_wordbag def main(filename): X = [[-1]] X_lens = [1] X = [] X_lens = [] global wordbag global index_wordbag with open(filename) as f: for line in f: line=line.strip('\n') #url解碼 line=urllib.unquote(line) #處理html轉義字符 h = HTMLParser.HTMLParser() line=h.unescape(line) vers=[] if len(line) >= MIN_LEN: #print "Learning xss query param:(%s)" % line #數字常量替換成8 line, number = re.subn(r'\d+', "8", line) #ulr日換成http://u line, number = re.subn(r'(http|https)://[a-zA-Z0-9\.@&/#!#\?:]+', "http://u", line) #干掉注釋 line, number = re.subn(r'\/\*.?\*\/', "", line) #print "Learning xss query etl param:(%s) " % line words=do_str(line) for word in words: if word in wordbag.keys(): vers.append([wordbag[word]]) else: vers.append([-1]) print word, vers np_vers = np.array(vers) print "np_vers:", np_vers, "X:", X #print np_vers X=np.concatenate([X,np_vers]) X_lens.append(len(np_vers)) #print X_lens remodel = hmm.GaussianHMM(n_components=N, covariance_type="full", n_iter=100) print X remodel.fit(X,X_lens) joblib.dump(remodel, "xss-train.pkl") return remodel def test(remodel,filename): with open(filename) as f: for line in f: line = line.strip('\n') # url解碼 line = urllib.unquote(line) # 處理html轉義字符 h = HTMLParser.HTMLParser() line = h.unescape(line) if len(line) >= MIN_LEN: #print "CHK XSS_URL:(%s) " % (line) # 數字常量替換成8 line, number = re.subn(r'\d+', "8", line) # ulr日換成http://u line, number = re.subn(r'(http|https)://[a-zA-Z0-9\.@&/#!#\?:]+', "http://u", line) # 干掉注釋 line, number = re.subn(r'\/\*.?\*\/', "", line) # print "Learning xss query etl param:(%s) " % line words = do_str(line) #print "GET Tokens (%s)" % words vers = [] for word in words: # print "ADD %s" % word if word in wordbag.keys(): vers.append([wordbag[word]]) else: vers.append([-1]) np_vers = np.array(vers) #print np_vers #print "CHK SCORE:(%d) QUREY_PARAM:(%s) XSS_URL:(%s) " % (pro, v, line) pro = remodel.score(np_vers) if pro >= T: print "SCORE:(%d) XSS_URL:(%s) " % (pro,line) #print line def test_normal(remodel,filename): with open(filename) as f: for line in f: # 切割參數 result = urlparse.urlparse(line) # url解碼 query = urllib.unquote(result.query) params = urlparse.parse_qsl(query, True) for k, v in params: v=v.strip('\n') #print "CHECK v:%s LINE:%s " % (v, line) if len(v) >= MIN_LEN: # print "CHK XSS_URL:(%s) " % (line) # 數字常量替換成8 v, number = re.subn(r'\d+', "8", v) # ulr日換成http://u v, number = re.subn(r'(http|https)://[a-zA-Z0-9\.@&/#!#\?:]+', "http://u", v) # 干掉注釋 v, number = re.subn(r'\/\*.?\*\/', "", v) # print "Learning xss query etl param:(%s) " % line words = do_str(v) # print "GET Tokens (%s)" % words vers = [] for word in words: # print "ADD %s" % word if word in wordbag.keys(): vers.append([wordbag[word]]) else: vers.append([-1]) np_vers = np.array(vers) # print np_vers # print "CHK SCORE:(%d) QUREY_PARAM:(%s) XSS_URL:(%s) " % (pro, v, line) pro = remodel.score(np_vers) print "CHK SCORE:(%d) QUREY_PARAM:(%s)" % (pro, v) #if pro >= T: #print "SCORE:(%d) XSS_URL:(%s) " % (pro, v) #print line if __name__ == '__main__': #test(remodel,sys.argv[2]) load_wordbag(sys.argv[1],2000) #print wordbag.keys() remodel = main(sys.argv[1]) #test_normal(remodel, sys.argv[2]) test(remodel, sys.argv[2])




