Rocketmq消費分為push和pull兩種方式,push為被動消費類型,pull為主動消費類型,push方式最終還是會從broker中pull消息。不同於pull的是,push首先要注冊消費監聽器,當監聽器處觸發后才開始消費消息,所以被稱為“被動”消費。
具體地,以pushConsumer的測試例子展開介紹,通常使用push消費的過程如下:
public class PushConsumer { public static void main(String[] args) throws InterruptedException, MQClientException { DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("CID_JODIE_1"); consumer.subscribe("Jodie_topic_1023", "*"); consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_FIRST_OFFSET); //wrong time format 2017_0422_221800 consumer.setConsumeTimestamp("20170422221800"); consumer.registerMessageListener(new MessageListenerConcurrently() { @Override public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) { System.out.printf(Thread.currentThread().getName() + " Receive New Messages: " + msgs + "%n"); return ConsumeConcurrentlyStatus.CONSUME_SUCCESS; } }); consumer.start(); System.out.printf("Consumer Started.%n"); } }
上述過程背后設計到的點如下:
I. checkConfig 檢查內容:
1.消費組 -- (不能與默認DEFAULT_CONSUMER同名)
2.消費模型 -- (默認CLUSTERING)
3.從何處開始消費 -- (默認CONSUME_FROM_LAST_OFFSET)
4.消費時間戳 -- (消息回溯,默認Default backtracking consumption time Half an hour ago)
5.消費負載均衡策略 -- (默認AllocateMessageQueueAveragely)
6.訂閱關系 --(map類型,即可訂閱多個topic;key=Topic, value=訂閱描述)
7.消費監聽 --(必須為orderly or concurrently類型之一)
8.消費消息的線程數量控制 -- (消費線程池最大、最小數量)
9.檢查單隊列並行消費允許的最大跨度 --(consumeConcurrentlyMaxSpan)
10.檢查拉消息本地隊列緩存消息最大數 --(pullThresholdForQueue)(processQueue.getMsgCount()記數)
11.檢查拉取時間間隔 --(拉消息間隔,由於是長輪詢,所以默認為0)
12.檢查批量消費的個數 --(一次消費多少條消息)
13.檢查批量拉取消息的個數 --(一次最多拉多少條)
II. copySubscription:
將訂閱信息設置到rebalanceImpl的map中用於負載。另外,如果該消費者的消費模式為集群消費,則會將retry的topic一並放到rebalanceImpl的map中用於負載。
III. 設置rebanlance信息
IV. 實例化pull消息的包裝類型
V. 如果不存在offsetStore對象,實例化offsetStore
廣播模式:
public class LocalFileOffsetStore implements OffsetStore {...}
注:load()函數體不為空
集群模式:
public class RemoteBrokerOffsetStore implements OffsetStore {...}
注:load()函數體為空
VI. 獲取監聽器,實例化consumeMessageService服務並啟動
ConsumeMessageOrderlyService啟動后會對拉取下來的消息進行處理。ConsumeMessageOrderlyService有兩種類型:ConsumeMessageOrderlyService和ConsumeMessageConcurrentlyService。
1). 如果消息監聽器是orderly類型,則創建ConsumeMessageOrderlyService實例
ConsumeMessageOrderlyService.start()只處理消息模式為CLUSTERING的消息消費。
public void start() { if (MessageModel.CLUSTERING.equals(ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl .messageModel())) { this.scheduledExecutorService.scheduleAtFixedRate(new Runnable() { @Override public void run() { ConsumeMessageOrderlyService.this.lockMQPeriodically(); } }, 1000 * 1, ProcessQueue.RebalanceLockInterval, TimeUnit.MILLISECONDS); } }
線程啟動后會每隔20s執行lockMQPeriodicallys(),lockMQPeriodicallys()會將消費的隊列上鎖,然后處理,具體過程,有機會單獨成文分析。
2). 如果消息監聽器是concurrently類型,則創建ConsumeMessageConcurrentlyService實例
ConsumeMessageConcurrentlyService.start()會定時清除過期消息 --> cleanExpireMsg()。
VII. 注冊消費組
將group和consumer注冊到MQClientInstance實例。
與生產者注冊生產者組類似,一個客戶端進程中一個consumerGroup只能有一個實例。
MQConsumerInner prev = this.consumerTable.putIfAbsent(group, consumer); if (prev != null) { log.warn("the consumer group[" + group + "] exist already."); return false; }
如果沒有注冊成功,則關閉消費服務,consumeMessageService.shutdown()。
VIII. 啟動mQClientFactory及MQClientInstance
1). 獲取client實例對象MQClientInstance -- getAndCreateMQClientInstance。
一個進程只能產生一個MQClientInstance實例對象, 某個客戶端的生產者與消費者共用這個實例對象。
2). 啟動客戶端實例的個各種服務:
public void start() throws MQClientException { synchronized (this) { switch (this.serviceState) { case CREATE_JUST: this.serviceState = ServiceState.START_FAILED; // 1.判斷NamesrvAddr是否為空,為空去遠程http服務拉去地址 if (null == this.clientConfig.getNamesrvAddr()) { this.clientConfig.setNamesrvAddr(this.mQClientAPIImpl.fetchNameServerAddr()); } // 2.開啟通信服務 this.mQClientAPIImpl.start(); // 3.啟動各種定時任務 this.startScheduledTask(); // 4.啟動消息拉取服務,循環拉取阻塞隊列pullRequestQueue this.pullMessageService.start(); // 5. 啟動負載均衡服務 this.rebalanceService.start(); // 6.啟動消息生產服務 this.defaultMQProducer.getDefaultMQProducerImpl().start(false); log.info("the client factory [{}] start OK", this.clientId); this.serviceState = ServiceState.RUNNING; break; case RUNNING: break; case SHUTDOWN_ALREADY: break; case START_FAILED: throw new MQClientException("The Factory object[" + this.getClientId() + "] has been created before, and failed.", null); default: break; } } }
分析push消費的過程,需對上述過程第3點、第4點、第5點依次介紹。
第3點、啟動各種定時任務過程:
編號 | 任務 | 周期 | 啟動時延 |
1 | 獲取namesrv地址 | 每隔2分鍾 | 0.01s |
2 | 更新路由信息 | 每隔3分鍾 | 001s |
3 | 向所有broker發送心跳包,並清除無效broker | 每隔30s | 1s |
4 | 持久化消費位置offset | 每隔5s | 10s |
5 | 調整消費線程池大小 | 每隔1分鍾 | 1min |
注:編號3中,客戶端會通過心跳消息,向broker注冊消費信息。Broker收到該心跳消息,把它維護在一個叫做ConsumerManager的對象里面,為之后做消費的負載均衡提供數據,負載均衡在消費端做,消費端在負載均衡時首先要從broker那獲取這份全局信息。
第4點 啟動pullMessageService服務
初始化客戶端實例時,創建PullMessageService服務對象。
this.pullMessageService = new PullMessageService(this),其中PullMessageService繼承於ServiceThread,是一個線程對象。啟動消息拉取服務線程后,在線程沒有阻塞的情況下會不斷地從循環阻塞隊列pullRequestQueue拉取PullRequest對象,然后執行this.pullMessage(pullRequest)。
那么pullRequestQueue的數據如何put進去的?核心是doRebalance ,負載均衡具體細節可以參考:
http://www.cnblogs.com/chenjunjie12321/p/7913323.html。

例如當前有N個客戶端同時消費一個topic下的消息隊列(如上圖),當前客戶端( clientId = currentCId),經過負載均衡處理后得到分配給當前消費者的消息隊列(如上圖的qM、qN),之后將這些隊列與processQueueTable中的隊列進行比對分析,見下面第五點。
第5點 RebalancePushImpl 負載均衡,分發pullRequest到pullRequestQueue。
負載均衡處理后得到分配給當前消費者的消息隊列,然后將這些隊列進行updateProcessQueueTableInRebalance 處理。updateProcessQueueTableInRebalance 的大致邏輯為如下 I、II 兩步:

I. 首先檢查當前RebalancePushImpl實例processQueueTable中與mqSet的包含關系
(1)如圖中processQueueTable的灰色部分,表示與mqSet集合不互不包含的隊列,對這些隊列首先設置Dropped為true,然后看這些隊列是否可以移除出processQueueTable--removeUnnecessaryMessageQueue,即每隔1s 看是否可以拿到當前隊列的消費鎖(tryLock()),拿到后返回true, 如果等待1s后仍然拿不到當前隊列的消費鎖則返回false,如果返回true則從processQueueTable移除對應的Entry<MessageQueue, ProcessQueue>;
(2) 如圖中processQueueTable的白色部分,表示與mqSet集合的交集隊列,對於這些隊列,如果是消費類型是pull型,則不用管,如果是push型,看這些隊列是否isPullExpired,如果是這些隊列首先設置Dropped為true,則可以移除出processQueueTable--removeUnnecessaryMessageQueue。
II. 經過 I 處理,processQueueTable更新之后, 將processQueueTable集合與mqSet的的相對補集: processQueueTable(mq) - mqSet 里的消息隊列依次封裝成pullRequest,然后dispatchPullRequest到pullRequestQueue中。
經過上述處理后,待消費的隊列放在了pullRequestList中,之后遍歷pullRequestList,對遍歷的每個隊列進行消費,代碼如下:
@Override public void dispatchPullRequest(List<PullRequest> pullRequestList) { for (PullRequest pullRequest : pullRequestList) { this.defaultMQPushConsumerImpl.executePullRequestImmediately(pullRequest); log.info("doRebalance, {}, add a new pull request {}", consumerGroup, pullRequest); } }
executePullRequestImmediately的邏輯功能:
public void executePullRequestImmediately(final PullRequest pullRequest) { try { this.pullRequestQueue.put(pullRequest); } catch (InterruptedException e) { log.error("executePullRequestImmediately pullRequestQueue.put", e); } }
總之,最終會將負載均衡得到的隊列存放到pullRequestQueue。
回過來繼續分析第4點,
pullMessageService線程涉及到消費的核心過程DefaultMQPushConsumerImpl.pullMessage,
pullMessageService線程線程體源碼如下:
@Override public void run() { log.info(this.getServiceName() + " service started"); while (!this.isStopped()) { try { PullRequest pullRequest = this.pullRequestQueue.take(); if (pullRequest != null) { this.pullMessage(pullRequest); } } catch (InterruptedException e) { } catch (Exception e) { log.error("Pull Message Service Run Method exception", e); } } log.info(this.getServiceName() + " service end"); }
調用DefaultMQPushConsumerImpl.pullMessage方法:
private void pullMessage(final PullRequest pullRequest) { final MQConsumerInner consumer = this.mQClientFactory.selectConsumer(pullRequest.getConsumerGroup()); if (consumer != null) { DefaultMQPushConsumerImpl impl = (DefaultMQPushConsumerImpl) consumer; impl.pullMessage(pullRequest); } else { log.warn("No matched consumer for the PullRequest {}, drop it", pullRequest); }
pullMessage具體體拉流程如下圖所示:

下面對並發消費模型(concurrently)的消費代碼進行展示:
class ConsumeRequest implements Runnable ,其線程體方法如下:

@Override public void run() { if (this.processQueue.isDropped()) { log.info("the message queue not be able to consume, because it's dropped. group={} {}", ConsumeMessageConcurrentlyService.this.consumerGroup, this.messageQueue); return; } MessageListenerConcurrently listener = ConsumeMessageConcurrentlyService.this.messageListener; ConsumeConcurrentlyContext context = new ConsumeConcurrentlyContext(messageQueue); ConsumeConcurrentlyStatus status = null; ConsumeMessageContext consumeMessageContext = null; if (ConsumeMessageConcurrentlyService.this.defaultMQPushConsumerImpl.hasHook()) { consumeMessageContext = new ConsumeMessageContext(); consumeMessageContext.setConsumerGroup(defaultMQPushConsumer.getConsumerGroup()); consumeMessageContext.setProps(new HashMap<String, String>()); consumeMessageContext.setMq(messageQueue); consumeMessageContext.setMsgList(msgs); consumeMessageContext.setSuccess(false); ConsumeMessageConcurrentlyService.this.defaultMQPushConsumerImpl.executeHookBefore(consumeMessageContext); } long beginTimestamp = System.currentTimeMillis(); boolean hasException = false; ConsumeReturnType returnType = ConsumeReturnType.SUCCESS; try { ConsumeMessageConcurrentlyService.this.resetRetryTopic(msgs); if (msgs != null && !msgs.isEmpty()) { for (MessageExt msg : msgs) { MessageAccessor.setConsumeStartTimeStamp(msg, String.valueOf(System.currentTimeMillis())); } } status = listener.consumeMessage(Collections.unmodifiableList(msgs), context); } catch (Throwable e) { log.warn("consumeMessage exception: {} Group: {} Msgs: {} MQ: {}", RemotingHelper.exceptionSimpleDesc(e), ConsumeMessageConcurrentlyService.this.consumerGroup, msgs, messageQueue); hasException = true; } long consumeRT = System.currentTimeMillis() - beginTimestamp; if (null == status) { if (hasException) { returnType = ConsumeReturnType.EXCEPTION; } else { returnType = ConsumeReturnType.RETURNNULL; } } else if (consumeRT >= defaultMQPushConsumer.getConsumeTimeout() * 60 * 1000) { returnType = ConsumeReturnType.TIME_OUT; } else if (ConsumeConcurrentlyStatus.RECONSUME_LATER == status) { returnType = ConsumeReturnType.FAILED; } else if (ConsumeConcurrentlyStatus.CONSUME_SUCCESS == status) { returnType = ConsumeReturnType.SUCCESS; } if (ConsumeMessageConcurrentlyService.this.defaultMQPushConsumerImpl.hasHook()) { consumeMessageContext.getProps().put(MixAll.CONSUME_CONTEXT_TYPE, returnType.name()); } if (null == status) { log.warn("consumeMessage return null, Group: {} Msgs: {} MQ: {}", ConsumeMessageConcurrentlyService.this.consumerGroup, msgs, messageQueue); status = ConsumeConcurrentlyStatus.RECONSUME_LATER; } if (ConsumeMessageConcurrentlyService.this.defaultMQPushConsumerImpl.hasHook()) { consumeMessageContext.setStatus(status.toString()); consumeMessageContext.setSuccess(ConsumeConcurrentlyStatus.CONSUME_SUCCESS == status); ConsumeMessageConcurrentlyService.this.defaultMQPushConsumerImpl.executeHookAfter(consumeMessageContext); } ConsumeMessageConcurrentlyService.this.getConsumerStatsManager() .incConsumeRT(ConsumeMessageConcurrentlyService.this.consumerGroup, messageQueue.getTopic(), consumeRT); if (!processQueue.isDropped()) { ConsumeMessageConcurrentlyService.this.processConsumeResult(status, context, this); } else { log.warn("processQueue is dropped without process consume result. messageQueue={}, msgs={}", messageQueue, msgs); } }
consumerRequest邏輯:
processConsumeResult -- 對消費結果進行處理:
重試隊列發消息邏輯:
生成一個重試隊列,重試隊列topic = %RETRY% + consumerGroup的形式。
附:
值得注意的是每次消費pullRequest上的一條數據后上更新消費到達的 offset,然后將pullRequest.setNextOffset(offset);
//這里的 this 為一個 DefaultMQPushConsumerImpl 實例對象 final long offset = this.rebalanceImpl.computePullFromWhere(pullRequest.getMessageQueue()); ... pullRequest.setNextOffset(offset);
其中 computePullFromWhere采用的策略有如下三種(另外還有幾個已經被棄用的(@Deprecated)):
CONSUME_FROM_LAST_OFFSET(默認): 一個新的消費集群第一次啟動從隊列的最后位置開始消費。后續再啟動接着上次消費的進度開始消費。 CONSUME_FROM_FIRST_OFFSET: 一個新的消費集群第一次啟動從隊列的最前位置開始消費。后續再啟動接着上次消費的進度開始消費。 CONSUME_FROM_TIMESTAMP: 一個新的消費集群第一次啟動從指定時間點開始消費。后續再啟動接着上次消費的進度開始消費。
DefaultMQPushConsumer 中默認采用 CONSUME_FROM_LAST_OFFSET 這種方式,當然可以根據自己需要修改computePullFromWhere的策略
private ConsumeFromWhere consumeFromWhere = ConsumeFromWhere.CONSUME_FROM_LAST_OFFSET;
IX. updateTopicSubscribeInfoWhenSubscriptionChanged
X. sendHeartbeatToAllBrokerWithLock
XI. rebalanceImmediately
(完)