A self-dividing number is a number that is divisible by every digit it contains.
For example, 128 is a self-dividing number because 128 % 1 == 0
, 128 % 2 == 0
, and 128 % 8 == 0
.
Also, a self-dividing number is not allowed to contain the digit zero.
Given a lower and upper number bound, output a list of every possible self dividing number, including the bounds if possible.
Example 1:
Input: left = 1, right = 22 Output: [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22]
Note:
- The boundaries of each input argument are
1 <= left <= right <= 10000
.
這道題讓我們找一個給定范圍內的所有的自整除數字,所謂的自整除數字就是該數字可以整除其每一個位上的數字。既然這道題是Easy類,那么一般來說不需要用tricky的方法,直接暴力搜索就行了,遍歷區間內的所有數字,然后調用子函數判斷其是否是自整除數,是的話就加入結果res中。在子函數中,我們先把數字轉為字符串,然后遍歷每個字符,只要其為0,或者num無法整除該位上的數字,就返回false,循環結束后返回true,參見代碼如下:
解法一:
class Solution { public: vector<int> selfDividingNumbers(int left, int right) { vector<int> res; for (int i = left; i <= right; ++i) { if (check(i)) res.push_back(i); } return res; } bool check(int num) { string str = to_string(num); for (char c : str) { if (c == '0' || num % (c - '0')) return false; } return true; } };
我們可以不用子函數,直接在大的for循環中加上一個for循環進行判斷即可,參見代碼如下:
解法二:
class Solution { public: vector<int> selfDividingNumbers(int left, int right) { vector<int> res; for (int i = left, n = 0; i <= right; ++i) { for (n = i; n > 0; n /= 10) { if (n % 10 == 0 || i % (n % 10) != 0) break; } if (n == 0) res.push_back(i); } return res; } };
類似題目:
參考資料:
https://discuss.leetcode.com/topic/111201/java-c-clean-code