以lstm+ctc對漢字識別為例對tensorflow 中的lstm,ctc loss的調試


#-*-coding:utf8-*-

__author = "buyizhiyou"
__date = "2017-11-21"

'''
單步調試,結合漢字的識別學習lstm,ctc loss的tf實現,tensorflow1.4
'''
import tensorflow as tf 
import numpy as np
import pdb
import random




def create_sparse(batch_size, dtype=np.int32):
    '''
    創建稀疏張量,ctc_loss中labels要求是稀疏張量,隨機生成序列長度在150~180之間的labels
    '''
    indices = []
    values = []
    for i in range(batch_size):
        length = random.randint(150,180)
        for j in range(length):
            indices.append((i,j))
            value = random.randint(0,779)
            values.append(value)

    indices = np.asarray(indices, dtype=np.int64)
    values = np.asarray(values, dtype=dtype)
    shape = np.asarray([batch_size, np.asarray(indices).max(0)[1] + 1], dtype=np.int64) #[64,180]

    return [indices, values, shape]  

W = tf.Variable(tf.truncated_normal([200,781],stddev=0.1), name="W")#num_hidden=200,num_classes=781(想象成780個漢字+blank),shape (200,781)
b = tf.Variable(tf.constant(0., shape=[781]), name="b")#781
global_step = tf.Variable(0, trainable=False)#全局步驟計數

#構造輸入
inputs = tf.random_normal(shape=[64,60,3000], dtype=tf.float32)#為了測試,隨機batch_size=64張圖片,h=60,w=3000,w可以看成lstm的時間步,即lstm輸入的time_step=3000,h看成是每一時間步的輸入tensor的size
shape = tf.shape(inputs)#array([ 64, 3000, 60], dtype=int32)
batch_s, max_timesteps = shape[0], shape[1] #64,3000
output = create_sparse(64)#創建64張圖片對應的labels,稀疏張量,序列長度變長
seq_len = np.ones(64)*180 #180為變長序列的最大值
labels = tf.SparseTensor(values=output[1],indices=output[0],dense_shape=output[2])

pdb.set_trace()
cell = tf.nn.rnn_cell.LSTMCell(200, state_is_tuple=True)
inputs = tf.transpose(inputs,[0,2,1])#轉置,因為默認的tf.nn.dynamic_rnn中參數time_major=false,即inputs的shape 是`[batch_size, max_time, ...]`,


'''
tf.nn.dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None, dtype=None, paralle
l_iterations=None, swap_memory=False, time_major=False, scope=None)
'''
outputs1, _ = tf.nn.dynamic_rnn(cell, inputs, seq_len, dtype=tf.float32)#(64, 3000, 200)動態rnn實現了輸入變長問題的解決方案http://blog.csdn.net/u010223750/article/details/71079036


outputs = tf.reshape(outputs1, [-1, 200])#(64×3000,200)
logits0 = tf.matmul(outputs, W) + b
logits1 = tf.reshape(logits0, [batch_s, -1, 781])
logits = tf.transpose(logits1, (1, 0, 2))#(3000, 64, 781)


'''
tf.nn.ctc_loss(labels, inputs, sequence_length, preprocess_collapse_repeated=False, ctc_merge
_repeated=True, ignore_longer_outputs_than_inputs=False, time_major=True)
'''
loss = tf.nn.ctc_loss(logits, labels, seq_len)#關於ctc loss解決rnn輸出和序列不對齊問題
#http://blog.csdn.net/left_think/article/details/76370453
#https://zhuanlan.zhihu.com/p/23293860
cost = tf.reduce_mean(loss)
optimizer = tf.train.MomentumOptimizer(learning_rate=0.01,
                                           momentum=0.9).minimize(cost, global_step=global_step)
#decoded, log_prob = tf.nn.ctc_beam_search_decoder(logits, seq_len, merge_repeated=False)#or "tf.nn.ctc_greedy_decoder"一種解碼策略
#acc = tf.reduce_mean(tf.edit_distance(tf.cast(decoded[0], tf.int32), labels))
with tf.Session() as sess:  
    sess.run(tf.global_variables_initializer())  
    print (outputs.get_shape())
    print (sess.run(loss))

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM