I. 同步機制
線程間的同步機制主要包括三個:
- 互斥鎖:
以排他的方式,防止共享資源被並發訪問;
互斥鎖為二元變量, 狀態為0-開鎖、1-上鎖;
開鎖必須由上鎖的線程執行,不受其它線程干擾.- 條件變量:
滿足某個特定條件時,可通過條件變量通知其它線程do-something;
必須與互斥鎖*聯合使用,單獨無法執行.- 讀寫鎖:
針對多讀者,少寫者的情況設定
- 允許多讀,但此時不可寫;
- 唯一寫,此時不可讀.
函數的頭文件為:
#include <phtread.h>
1. 互斥鎖
操作流程:
- I. 創建互斥鎖
- II. 申請鎖:若可用,立刻占用;否則,阻塞等待
- III. do-something
- IV. 釋放鎖
- V. 銷毀鎖
以下是互斥鎖的基本操作函數:
| 功能 | 函數 | 參數 | 返回值 | 說明 |
|---|---|---|---|---|
| 初始化鎖 | int pthread_mutex_init( pthread_mutex_t *mutex, const pthread_mutexattr_t *attr) |
1. mutex: 欲建立的互斥鎖 2.attr:屬性,一般為NULL |
成功:0 失敗:非零值 |
|
| 阻塞申請鎖 | int pthread_mutex_lock( pthread_mutex_t *mutex) |
mutex:互斥鎖 | 成功:0 失敗:非零值 |
若未申請到, 阻塞等待 |
| 非阻塞申請 | int pthread_mutex_trylock( pthread_mutex_t *mutex) |
mutex:互斥鎖 | 成功:0 失敗:非零值 |
若未申請到, 返回錯誤 |
| 釋放鎖 | int pthread_mutex_unlock( pthread_mutex_t *mutex) |
mutex:互斥鎖 | 成功:0 失敗:非零值 |
|
| 銷毀鎖 | int pthread_mutex_destroy( pthread_mutex_t *mutex) |
mutex:互斥鎖 | 成功:0 失敗:非零值 |
2. 條件變量
注意,條件變量必須與互斥鎖共同使用;
以下是條件變量的基本操作函數:
| 功能 | 函數 | 參數 | 返回值 | 說明 |
|---|---|---|---|---|
| 初始化鎖 | int pthread_cond_init( pthread_cond_t *cond, const pthread_condattr_t *attr) |
1. cond: 欲建立的條件變量 2.attr:屬性,一般為NULL |
成功:0 失敗:非零值 |
|
| 等待條件變量 | int pthread_cond_wait( pthread_cond_t *cond, pthread_mutex_t *mutex) |
1.cond:條件變量 2.mutex:互斥鎖 |
成功:0 失敗:非零值 |
阻塞等待 隱含釋放申請到的互斥鎖 |
| 限時等待條件變量 | int pthread_cond_timewait( pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *time) |
3.time:等待過期的絕對時間 從1970-1-1:0:0:0起 |
成功:0 失敗:非零值 |
struct timespec{long ts_sec; long ts_nsec} |
| 單一通知 | int pthread_cond_signal( pthread_cond_t *cond) |
cond:條件變量 | 成功:0 失敗:非零值 |
喚醒等待cond的第一個線程 隱含獲取需要的互斥鎖 |
| 廣播通知 | int pthread_cond_broadcast( pthread_cond_t *cond) |
cond:條件變量 | 成功:0 失敗:非零值 |
喚醒所有等待cond的線程 隱含獲取需要的互斥鎖 |
| 銷毀條件變量 | int pthread_cond_destroy( pthread_cond_t *cond) |
cond:條件變量 | 成功:0 失敗:非零值 |
3. 讀寫鎖
讀寫基本原則:
- 若當前線程讀數據,則允許其他線程讀數據,但不允許寫
- 若當前線程寫數據,則不允許其他線程讀、寫數據
以下是基本的操作:
| 功能 | 函數 | 參數 | 返回值 | 說明 |
|---|---|---|---|---|
| 初始化鎖 | int pthread_rwlock_init( pthread_rwlock_t *rwlock, const pthread_rwlockattr_t *attr) |
1. rwlock: 欲建立的讀寫鎖 2.attr:屬性,一般為NULL |
成功:0 失敗:非零值 |
|
| 阻塞申請讀鎖 | int pthread_rwlock_rdlock( pthread_rwlock_t *rwlock) |
rwlock:讀寫鎖 | 成功:0 失敗:非零值 |
若未申請到, 阻塞等待 |
| 非阻塞申請 | int pthread_rwlock_tryrdlock( pthread_rwlock_t *rwlock) |
rwlock:讀寫鎖 | 成功:0 失敗:非零值 |
若未申請到, 返回錯誤 |
| 阻塞申請寫鎖 | int pthread_rwlock_wrlock( pthread_rwlock_t *rwlock) |
rwlock:讀寫鎖 | 成功:0 失敗:非零值 |
若未申請到, 阻塞等待 |
| 非阻塞申請寫鎖 | int pthread_rwlock_trywrlock( pthread_rwlock_t *rwlock) |
rwlock:讀寫鎖 | 成功:0 失敗:非零值 |
若未申請到, 返回錯誤 |
| 釋放鎖 | int pthread_mutex_unlock( pthread_rwlock_t *rwlock) |
rwlock:讀寫鎖 | 成功:0 失敗:非零值 |
|
| 銷毀鎖 | int pthread_rwlock_destroy( pthread_rwlock_t *rwlock) |
rwlock:讀寫鎖 | 成功:0 失敗:非零值 |
4. 線程信號量
線程信號量類似進程的信號量,主要是使得多個線程訪問共享資源時,順序互斥訪問。
與互斥鎖的區別在於:
- 互斥鎖:只有一個bool類型的值,只允許2個線程進行排隊;
- 信號量:允許多個線程共同等待一個共享資源
函數如下:
#include <semaphore.h>
| 功能 | 函數 | 參數 | 返回值 | 說明 |
|---|---|---|---|---|
| 創建信號量 | int sem_init(sem_t *sem, int pshared, unsigned int value) |
1. sem:信號量地址; 2. pshared:是(!=0)否(0)為共享信號量 3. value:信號量初值 |
0: 成功 -1: 失敗 |
|
| P操作(阻塞) | int sem_wait(sem_t *sem) | sem:信號量地址 | 0: 成功 -1: 失敗 |
|
| P操作(非阻塞) | int sem_trywait(sem_t *sem) | sem:信號量地址 | 0: 成功 -1: 失敗 |
|
| P操作(時間) | int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout) |
1. sem:信號量地址 2. abs_timeout:超時時間 |
0: 成功 -1: 失敗 |
struct timespec 見下面 |
| V操作 | int sem_post(sem_t *sem) | sem:信號量地址 | 0: 成功 -1: 失敗 |
|
| 獲取信號量值 | int sem_getvalue(sem_t *sem, int *sval) | 1. sem:信號量地址 2. sval: 將信號量值放到該地址 |
0: 成功 -1: 失敗 |
|
| 刪除信號量 | int sem_destroy(sem_t *sem) | sem:信號量地址 | 0: 成功 -1: 失敗 |
struct timespec {
time_t tv_sec; /* Seconds */
long tv_nsec; /* Nanoseconds [0 .. 999999999] */
};
II. 異步機制 - 信號
線程的異步機制只有信號,類似於線程的信號。
線程信號具備以下特點
- 任何線程都可以向其它線程(同一進程下)發送信號;
- 每個線程都具備自己獨立的信號屏蔽集,不影響其它線程;
- 線程創建時,不繼承原線程的信號屏蔽集;
- 同進程下,所有線程共享對某信號的處理方式,即一個設置,所有有效;
- 多個線程的程序,向某一個線程發送終止信號,則整個進程終止
信號的基本操作如下:
| 功能 | 函數 | 參數 | 返回值 | 說明 |
|---|---|---|---|---|
| 安裝信號 | sighandler_t signal( int signum, sighandler_t handler) |
1.signum:信號值 2.handler:信號操作 |
詳情參見: http://www.cnblogs.com/Jimmy1988/p/7575103.html |
|
| 發送信號 | int pthread_kill( pthread_t threadid, int signo |
1.threadid: 目標線程id 2.signo:信號值 |
成功:0 失敗:非零值 |
若signo=0, 檢測該線程是否存在, 不發送信號 |
| 設置屏蔽集 | pthread_sigmask(int how, const sigset_t *set, sigset_t *oldset) |
1.how:如何更改信號掩碼 2.newmask:新的信號屏蔽集 3.原信號屏蔽集 |
成功:0 失敗:非零值 |
how值: 1.SIG_BLOCK:添加新掩碼 2.SIG_UNBLOCK:刪除新掩碼 3.SIG_SETMASK:設置新掩碼完全替換舊值 |
也可以參考這篇博客:https://www.cnblogs.com/coding-my-life/p/4782529.html
III、示例代碼
1.同步機制:
1). 互斥鎖:
兩個線程:
- 讀線程:從
stdin中讀取數據,並存儲- 寫線程:從存儲buffer中讀取數據並顯示
#include <stdio.h>
#include <string.h>
#include <pthread.h>
#include <unistd.h>
#include <stdlib.h>
#define SIZE 128
pthread_mutex_t mutex;
int EXIT = 0;
char word[SIZE];
void * child(void *arg)
{
while(1)
{
while(strlen(word) == 0)
usleep(100);
pthread_mutex_lock(&mutex);
printf("The input words: %s\n", word);
pthread_mutex_unlock(&mutex);
if(strcmp("end\n", word) == 0)
{
printf("The process end\n");
EXIT = 1;
break;
}
memset(word, '\0', SIZE);
}
return ;
}
int main()
{
//1. create the lock
pthread_mutex_init(&mutex, NULL);
//2.create a new thread
pthread_t tid;
pthread_create(&tid, NULL, (void *)*child, NULL);
//3. Input words
while(EXIT == 0)
{
if(strlen(word)!=0)
usleep(100);
//add the lock
else
{
pthread_mutex_lock(&mutex);
printf("Input words: ");
fgets(word, SIZE, stdin);
pthread_mutex_unlock(&mutex);
}
}
pthread_join(tid, NULL);
printf("The child has joined\n");
pthread_mutex_destroy(&mutex);
return 0;
}
2). 條件變量:
生產者和消費者問題:
- 生產者:
向倉庫生產數據(大小可任意設定),當滿時,阻塞等待倉庫有空閑(由消費者消費完后通知)- 消費者:
從倉庫讀數據,若倉庫為空,則阻塞等待,當生產者再次生產產品后通知
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#define SIZE 2
int Data[SIZE];
typedef struct
{
pthread_mutex_t lock;
pthread_cond_t notFull;
pthread_cond_t notEmpty;
int read_point;
int write_point;
}sCOND;
sCOND *pCondLock;
void init(void)
{
//memset(pCondLock, 0, sizeof(sCOND));
//1.Create a mutex lock
pthread_mutex_init(&pCondLock->lock, NULL);
//2.Create two condition variable
pthread_cond_init(&pCondLock->notFull, NULL);
pthread_cond_init(&pCondLock->notEmpty, NULL);
//set the read and write point 0
pCondLock->read_point = 0;
pCondLock->write_point = 0;
}
int put(int data)
{
//obtain the mutex lock
pthread_mutex_lock(&pCondLock->lock);
//check the global variable Data full or not
while((pCondLock->write_point+1)%SIZE == pCondLock->read_point)
{
printf("The buf is full, waitting for not_full signal\n");
pthread_cond_wait(&pCondLock->notFull, &pCondLock->lock);
}
//write the data to buffer
Data[pCondLock->write_point] = data;
pCondLock->write_point++;
if(pCondLock->write_point == SIZE)
pCondLock->write_point = 0;
//unlock the mutex lock
pthread_mutex_unlock(&pCondLock->lock);
//wake up the not_empty signal
pthread_cond_signal(&pCondLock->notEmpty);
return 0;
}
int get(int *data)
{
//obtain the mutex lock
pthread_mutex_lock(&pCondLock->lock);
//check the global variable Data empty or not
while(pCondLock->write_point == pCondLock->read_point)
{
printf("The buf is empty, waitting for not_empty signal\n");
pthread_cond_wait(&pCondLock->notEmpty, &pCondLock->lock);
}
//read the data from buffer
*data = Data[pCondLock->read_point];
pCondLock->read_point++;
if(pCondLock->read_point == SIZE)
pCondLock->read_point = 0;
//wake up the not_empty signal
pthread_cond_signal(&pCondLock->notFull);
pthread_mutex_unlock(&pCondLock->lock);
return *data;
}
void *produce(void)
{
int times=0;
//1. first 5 times, every second write a data to buffer
for(times=0; times < 5; times++)
{
sleep(1);
put(times+1);
printf("Input date=%d\n", times+1);
}
//2. last 5 times, every 3 seconds write a data to buffer
for(times = 5; times < 10; times++)
{
sleep(3);
put(times+1);
printf("Input date=%d\n", times+1);
}
}
void *consume(void)
{
int times=0;
int data=0;
//10 times, every 2 seconds read the buffer
for(times = 0; times < 10; times++)
{
sleep(2);
data = get(&data);
printf("The data is %d\n", data);
}
}
int main()
{
pthread_t tid1, tid2;
pCondLock = malloc(sizeof(sCOND));
memset(pCondLock, '\0', sizeof(sCOND));
//1.init the struct of sCondLock
init();
//2. start two threads
pthread_create(&tid1, NULL, (void*)*produce, NULL);
pthread_create(&tid2, NULL, (void*)*consume, NULL);
pthread_join(tid1, NULL);
pthread_join(tid2, NULL);
free(pCondLock);
return 0;
}
3). 讀寫鎖:
四個線程:兩讀兩寫;
多進程可同時讀,但此時不可寫;
只有一個線程可寫,其它線程等待該線程寫完后執行響應的讀/寫操作
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <pthread.h>
#include <stdlib.h>
#define BUF_SIZE 128
char buf[BUF_SIZE];
pthread_rwlock_t rwlock;
int time_to_exit = 0;
void *read_first(void *arg);
void *read_second(void *arg);
void *write_first(void *arg);
void *write_second(void *arg);
int main()
{
pthread_t tid_rd1, tid_rd2;
pthread_t tid_wr1, tid_wr2;
//1.create a read-write-lock
int ret = pthread_rwlock_init(&rwlock, NULL);
if(ret != 0)
{
perror("pthread_rwlock_init");
exit(EXIT_FAILURE);
}
//2. Create the read and write threads
ret = pthread_create(&tid_rd1, NULL, (void *)*read_first, NULL);
if(ret != 0)
{
perror("pthread_create");
exit(EXIT_FAILURE);
}
ret = pthread_create(&tid_rd2, NULL, (void *)*read_second, NULL);
if(ret != 0)
{
perror("pthread_create");
exit(EXIT_FAILURE);
}
ret = pthread_create(&tid_wr1, NULL, (void *)*write_first, NULL);
if(ret != 0)
{
perror("pthread_create");
exit(EXIT_FAILURE);
}
ret = pthread_create(&tid_wr2, NULL, (void *)*write_second, NULL);
if(ret != 0)
{
perror("pthread_create");
exit(EXIT_FAILURE);
}
//3. wait for the threads finish
pthread_join(tid_rd1, NULL);
pthread_join(tid_rd2, NULL);
pthread_join(tid_wr1, NULL);
pthread_join(tid_wr2, NULL);
//4. delete the read-write-lock
pthread_rwlock_destroy(&rwlock);
return 0;
}
/***************************************************/
// Write threads
void *write_first(void *arg)
{
while(!time_to_exit)
{
sleep(5);
//1. get the read-lock
pthread_rwlock_wrlock(&rwlock);
printf("\nThis is thread write_first!\n");
printf("Pls input the string: ");
fgets(buf, BUF_SIZE, stdin);
pthread_rwlock_unlock(&rwlock);
}
printf("Exit the write_first!\n");
pthread_exit(0);
}
void *write_second(void *arg)
{
while(!time_to_exit)
{
sleep(10);
//1. get the read-lock
pthread_rwlock_wrlock(&rwlock);
printf("\nThis is thread write_second!\n");
printf("Pls input the string: ");
fgets(buf, BUF_SIZE, stdin);
pthread_rwlock_unlock(&rwlock);
}
printf("Exit the write_second!\n");
pthread_exit(0);
}
//-----2. read the threads
void *read_first(void *arg)
{
while(1)
{
sleep(5);
pthread_rwlock_rdlock(&rwlock);
printf("\nThis is thread read_first\n");
//if write an string of "end"
if(!strncmp("end", buf, 3))
{
printf("Exit the read_first!\n");
break;
}
//if nothing in the BUFFER
while(strlen(buf) == 0)
{
pthread_rwlock_unlock(&rwlock);
sleep(2);
pthread_rwlock_rdlock(&rwlock);
}
//output the string in BUFFER
printf("The string is: %s\n", buf);
pthread_rwlock_unlock(&rwlock);
}
pthread_rwlock_unlock(&rwlock);
//make the exit true
time_to_exit = 1;
pthread_exit(0);
}
void *read_second(void *arg)
{
while(1)
{
sleep(4);
pthread_rwlock_rdlock(&rwlock);
printf("\nThis is thread read_second\n");
//if write an string of "end"
if(!strncmp("end", buf, 3))
{
printf("Exit the read_second!\n");
break;
}
//if nothing in the BUFFER
while(strlen(buf) == 0)
{
pthread_rwlock_unlock(&rwlock);
sleep(2);
pthread_rwlock_rdlock(&rwlock);
}
//output the string in BUFFER
printf("The string is: %s\n", buf);
pthread_rwlock_unlock(&rwlock);
}
pthread_rwlock_unlock(&rwlock);
//make the exit true
time_to_exit = 1;
pthread_exit(0);
}
2. 異步機制 - 信號:
本程序包括兩個線程:
- 線程1安裝SIGUSR1,阻塞除SIGUSR2外的所有信號;
- 線程2安裝SIGUSR2,不阻塞任何信號
操作流程:
- 1- 線程1、2安裝信號;
- 2- 主線程發送SIGUSR1和SIGUSR2至線程1和線程2;
- 3- 線程1接收到除SIGUSR2之外的信號,阻塞不執行;當收到SIGUSR2后,執行對應操作;
- 4- 線程2接收到SIGUSR1和SIGUSR2后,分別執行對應操作
- 5- 主線程發送SIGKILL信號,結束整個進程
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <pthread.h>
#include <signal.h>
#include <stdlib.h>
void *th_first(void *arg);
void *th_second(void *arg);
pthread_t tid1, tid2;
void handler(int signo)
{
printf("In handler: tid_%s, signo=%d\n", ((pthread_self() == tid1)?"first":"second"), signo);
}
int main()
{
int ret = 0;
//1. create first thread
ret = pthread_create(&tid1, NULL, (void *)*th_first, NULL);
if(0 !=ret)
{
perror("pthread_create");
exit(EXIT_FAILURE);
}
//2. create second thread
ret = pthread_create(&tid2, NULL, (void *)*th_second, NULL);
if(0 !=ret)
{
perror("pthread_create");
exit(EXIT_FAILURE);
}
sleep(2);
//3. send the signal of SIG_USER1 and SIG_USER2 to thread_first
ret = pthread_kill(tid1, SIGUSR1);
if(0 !=ret)
{
perror("pthread_kill");
exit(EXIT_FAILURE);
}
ret = pthread_kill(tid1, SIGUSR2);
if(0 !=ret)
{
perror("pthread_kill");
exit(EXIT_FAILURE);
}
//4. send the signal of SIG_USER1 and SIG_USER2 to thread_second_
sleep(1);
ret = pthread_kill(tid2, SIGUSR1);
if(0 !=ret)
{
perror("pthread_kill");
exit(EXIT_FAILURE);
}
ret = pthread_kill(tid2, SIGUSR2);
if(0 !=ret)
{
perror("pthread_kill");
exit(EXIT_FAILURE);
}
sleep(1);
//5. send SIGKILL to all threads
ret = pthread_kill(tid1, SIGKILL);
if(0 !=ret)
{
perror("pthread_kill");
exit(EXIT_FAILURE);
}
pthread_join(tid1, NULL);
pthread_join(tid2, NULL);
return 0;
}
void *th_first(void *arg)
{
//1. Add SIGUSR1 signal
signal(SIGUSR1, handler);
//2. Set the sinagl set
sigset_t set;
sigfillset(&set); //init set to be full, include all signal
sigdelset(&set, SIGUSR2); //delete the SIGUSR2 from the set variable
pthread_sigmask(SIG_SETMASK, &set, NULL); //set the current mask set to be defined set variable
//3. Circular wait the signal
int i;
for(i=0; i<5; i++)
{
printf("\nThis is th_first, tid=%#x\n ", pthread_self());
pause();
}
}
void *th_second(void *arg)
{
usleep(100);
//1. Add the signal of SIGUSR2
signal(SIGUSR2, handler);
//2. Circular wait the signal
int i;
for(i=0; i<5; i++)
{
printf("\nThis is th_second, tid=%#x\n", pthread_self());
pause();
}
}
