1、前期准備
安裝依賴
sudo yum install protobuf-devel leveldb-devel snappy-devel opencv-devel boost-devel hdf5-devel
sudo yum install gflags-devel glog-devel lmdb-devel
sudo yum atlas-devel cmake glibc-devel gcc-gfortran autoconf automake gcc gcc-c++ git libtool make pkgconfig zlib-devel SDL* yasm* python-devel cmake* git ncurses* *freetype2 nasm nasm*
安裝Boost
安裝glog
安裝protobuf
安裝lmdb
安裝leveldb
安裝gflags
安裝hdf5
***切記,上述依賴需要安裝到/usr/local下面的目錄,否則編譯時會提示找不到相關庫文件。
安裝ffmpeg
安裝opencv
安裝cuda
查看cuda版本:cat /usr/local/cuda/version.txt
安裝cudnn
如果將來要采用python調用caffe的話,必須將numpy提前裝好:
pip install numpy pip install pandas pip install ipython
2、使用安Makefile.config裝及編譯caffe
下載caffe並移動到想存放的路徑:
修改Makefile.config文件:
進入caffe目錄 cp Makefile.config.example Makefile.config vim Makefile.config
文件的修改需要根據自己的具體情況,下面是一個示例:
## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). # USE_CUDNN := 1 "CuDNN是NVIDIA專門針對Deep Learning框架設計的一套GPU計算加速庫,用於實現高性能的並行計算,在有GPU並且安裝CuDNN的情況下可以打開即將注釋去掉。" # CPU-only switch (uncomment to build without GPU support). #CPU_ONLY := 1 "表示是否用GPU,如果只有CPU這里要打開" # uncomment to disable IO dependencies and corresponding data layers USE_OPENCV := 1 "因為要用到OpenCV庫所以要打開,下面這兩個選項表示是選擇Caffe的數據管理第三方庫,兩者都不打開 Caffe默認用的是LMDB,這兩者均是嵌入式數據庫管理系統編程庫。" # USE_LEVELDB := 0 # USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) # You should not set this flag if you will be reading LMDBs with any # possibility of simultaneous read and write # ALLOW_LMDB_NOLOCK := 1 "當需要讀取LMDB文件時可以取消注釋,默認不打開。" # Uncomment if you're using OpenCV 3 OPENCV_VERSION := 2.4.10 "用pkg-config --modversion opencv命令查看opencv版本" # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ "linux系統默認使用g++編譯器,OSX則是clang++。" # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda "CUDA的安裝目錄" # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 lines for compatibility. CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \ -gencode arch=compute_20,code=sm_21 \ -gencode arch=compute_30,code=sm_30 \ -gencode arch=compute_35,code=sm_35 \ -gencode arch=compute_50,code=sm_50 \ -gencode arch=compute_50,code=compute_50 "這些參數需要根據GPU的計算能力 (http://blog.csdn.net/jiajunlee/article/details/52067962)來進行設置,6.0以下的版本不支持×_50的計算能力。" # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas BLAS := open "如果用的是ATLAS計算庫則賦值atlas,MKL計算庫則用mkl賦值,OpenBlas則賦值open。" # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! BLAS_INCLUDE := /usr/local/OpenBlas/include BLAS_LIB := /usr/local/OpenBlas/lib "blas庫安裝目錄" # Homebrew puts openblas in a directory that is not on the standard search path # BLAS_INCLUDE := $(shell brew --prefix openblas)/include # BLAS_LIB := $(shell brew --prefix openblas)/lib "如果不是安裝在標准路徑則要指明" # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. # MATLAB_DIR := /usr/local # MATLAB_DIR := /Applications/MATLAB_R2012b.app "matlab安裝庫的目錄" # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. # 這里特別要注意,使用python -c "import numpy; print numpy.__file__"查看numpy的路徑 PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib64/python2.7/site-packages/numpy/core/include # /usr/lib/python2.7/dist-packages/numpy/core/include "python安裝目錄" # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it's in root. # ANACONDA_HOME := $(HOME)/anaconda # PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ # $(ANACONDA_HOME)/include/python2.7 \ # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \ # Uncomment to use Python 3 (default is Python 2) # PYTHON_LIBRARIES := boost_python3 python3.5m # PYTHON_INCLUDE := /usr/include/python3.5m \ # /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. PYTHON_LIB := /usr/lib <font color="green">python庫位置</font> # PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) # USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean` BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 # DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 "所用的GPU的ID編號" # enable pretty build (comment to see full commands) Q ?= @
編譯:
make clean #如果是第一次編譯,則不需要執行這一步驟 make all -j16 #-j16表示開16個線程並行編譯,可以大大減少編譯時間,但是線程數不要超過cpu核數 make test -j16 make runtest
編譯pycaffe:
#編譯 make pycaffe -j16 #添加環境變量 vim ~/.bashrc 將export PYTHONPATH=/home/wanghh/caffe/python:$PYTHONPATH添加到文件中。 source ~/.bashrc 使更改生效。 這樣,在其他地方打開python,也可以import caffe了。
3、使用cmake安裝及編譯caffe
(1)進入caffe根目錄:cd xxx/xxx/caffe
(2)創建build文件夾並配置
mkdir build cd build cmake ..
cmake ..如果報錯,則使用cmake -D xxx=xxxxxx ..來修改參數(例如:cmake -D BLAS=open ..)
(3)編譯
make -j32 # -j后面為cpu核數,可小於或等於實際cpu核數
4、測試
進入caffe目錄 sh data/mnist/get_mnist.sh sh examples/mnist/create_mnist.sh sh examples/mnist/train_lenet.sh
出現下圖所示結果:
至此,caffe安裝成功
5、可能出現的問題
python/caffe/_caffe.cpp:10:31: fatal error: numpy/arrayobject.h: No such file or directory(make pycaffe -j16 時)
原因:numpy路徑設置錯誤。
解決方案:使用python -c "import numpy; print numpy.__file__"查看numpy的路徑,修改Makefile.config,如示例:
PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib64/python2.7/site-packages/numpy/core/include # /usr/lib/python2.7/dist-packages/numpy/core/include
./build/tools/caffe: error while loading shared libraries: libcudart.so.8.0: cannot open shared object file: No such file or directory(./examples/mnist/train_lenet.sh時)
原因:
解決方案:
sudo cp /usr/local/cuda-8.0/lib64/libcudart.so.8.0 /usr/local/lib/libcudart.so.8.0 && sudo ldconfig sudo cp /usr/local/cuda-8.0/lib64/libcublas.so.8.0 /usr/local/lib/libcublas.so.8.0 && sudo ldconfig sudo cp /usr/local/cuda-8.0/lib64/libcurand.so.8.0 /usr/local/lib/libcurand.so.8.0 && sudo ldconfig
make -j24時 :
/usr/bin/ld: /usr/local/lib/libpython2.7.a(object.o): relocation R_X86_64_32 against `.rodata.str1.1' can not be used when making a shared object; recompile with -fPIC
或:
/usr/bin/ld: /usr/local/lib/libpython2.7.a(abstract.o): relocation R_X86_64_32S against `_Py_NotImplementedStruct' can not be used when making a shared object; recompile with -fPIC
/usr/local/lib/libpython2.7.a: could not read symbols: Bad value
原因:
解決方案:
make all -j16時:
error -- unsupported GNU version! gcc versions later than 5 are not supported!
原因:
解決方案: