keras與sklearn的結合使用
Time: 2017-4-14
引言
眾所周知,keras目前沒有提供交叉驗證的功能,我們要向使用交叉驗證,就需要與sklearn結合。keras也提供了這樣的包裝接口。keras.wrappers.scikit_learn
通過這個包里面的KerasClassifier或者KerasRegressor就可以結合。閑話少敘,上代碼。
代碼
#!/usr/bin/python
# encoding: utf-8
""" @version: 1.0 @author: Fly Lu @license: Apache Licence @contact: luyfuyu@gmail.com @site: https://www.flyuuu.cn @software: PyCharm @file: sklearn_keras.py @time: 2017-04-09 9:23 @description: 描述sklearn使用keras """
from keras.wrappers.scikit_learn import KerasClassifier
from keras.models import Sequential
from keras.layers import Dense
from sklearn.cross_validation import StratifiedKFold, cross_val_score
import numpy as np
def create_model():
model = Sequential()
model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
# 為了讓每次的結果都相同
seed = 7
np.random.seed(seed)
# 加載數據
dataset = np.loadtxt('./data/pima-indians-diabetes.csv', delimiter=',')
X = dataset[:, 0:8]
Y = dataset[:, 8]
model = KerasClassifier(build_fn=create_model, epochs=150, batch_size=10)
kfold = StratifiedKFold(Y, n_folds=10, shuffle=True, random_state=seed)
results = cross_val_score(model, X, Y, cv=kfold)
print(np.average(results))