#coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) #每個批次的大小 batch_size = 100 n_batch = mnist.train._num_examples // batch_size def weight_variable(shape): initial = tf.truncated_normal(shape,stddev=0.1) #生成一個截斷的正態分布 return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1,shape = shape) return tf.Variable(initial) #卷基層 def conv2d(x,W): return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME') #池化層 def max_pool_2x2(x): return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') #定義兩個placeholder x = tf.placeholder(tf.float32, [None,784]) y = tf.placeholder(tf.float32,[None,10]) #改變x的格式轉為4D的向量[batch,in_height,in_width,in_channels] x_image = tf.reshape(x, [-1,28,28,1]) #初始化第一個卷基層的權值和偏置 W_conv1 = weight_variable([5,5,1,32]) #5*5的采樣窗口 32個卷積核從一個平面抽取特征 32個卷積核是自定義的 b_conv1 = bias_variable([32]) #每個卷積核一個偏置值 #把x_image和權值向量進行卷積,再加上偏置值,然后應用於relu激活函數 h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1) h_pool1 = max_pool_2x2(h_conv1) #進行max-pooling #初始化第二個卷基層的權值和偏置 W_conv2 = weight_variable([5,5,32,64]) # 5*5的采樣窗口 64個卷積核從32個平面抽取特征 由於前一層操作得到了32個特征圖 b_conv2 = bias_variable([64]) #每一個卷積核一個偏置值 #把h_pool1和權值向量進行卷積 再加上偏置值 然后應用於relu激活函數 h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) #進行max-pooling #28x28的圖片第一次卷積后還是28x28 第一次池化后變為14x14 #第二次卷積后 變為14x14 第二次池化后變為7x7 #通過上面操作后得到64張7x7的平面 #初始化第一個全連接層的權值 W_fc1 = weight_variable([7*7*64,1024])#上一層有7*7*64個神經元,全連接層有1024個神經元 b_fc1 = bias_variable([1024]) #1024個節點 #把第二個池化層的輸出扁平化為一維 h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64]) #求第一個全連接層的輸出 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1) #keep_prob用來表示神經元的輸出概率 keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob) #初始化第二個全連接層 W_fc2 = weight_variable([1024,10]) b_fc2 = bias_variable([10]) #計算輸出 prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2) #交叉熵代價函數 cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) #使用AdamOptimizer進行優化 train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #結果存放在一個布爾列表中 correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1)) #argmax返回一維張量中最大的值所在的位置 #求准確率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for epoch in range(13): for batch in range(n_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7}) acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0}) print ("Iter "+ str(epoch) + ", Testing Accuracy= " + str(acc)) saver.save(sess,save_path='/home/bayes/logs/mnist_net.ckpt')
提取保存的參數進行准確率驗證
#coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) #每個批次的大小 batch_size = 100 n_batch = mnist.train._num_examples // batch_size def weight_variable(shape): initial = tf.truncated_normal(shape,stddev=0.1) #生成一個截斷的正態分布 return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1,shape = shape) return tf.Variable(initial) #卷基層 def conv2d(x,W): return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME') #池化層 def max_pool_2x2(x): return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') #定義兩個placeholder x = tf.placeholder(tf.float32, [None,784]) y = tf.placeholder(tf.float32,[None,10]) #改變x的格式轉為4D的向量[batch,in_height,in_width,in_channels] x_image = tf.reshape(x, [-1,28,28,1]) #初始化第一個卷基層的權值和偏置 W_conv1 = weight_variable([5,5,1,32]) #5*5的采樣窗口 32個卷積核從一個平面抽取特征 32個卷積核是自定義的 b_conv1 = bias_variable([32]) #每個卷積核一個偏置值 #把x_image和權值向量進行卷積,再加上偏置值,然后應用於relu激活函數 h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1) h_pool1 = max_pool_2x2(h_conv1) #進行max-pooling #初始化第二個卷基層的權值和偏置 W_conv2 = weight_variable([5,5,32,64]) # 5*5的采樣窗口 64個卷積核從32個平面抽取特征 由於前一層操作得到了32個特征圖 b_conv2 = bias_variable([64]) #每一個卷積核一個偏置值 #把h_pool1和權值向量進行卷積 再加上偏置值 然后應用於relu激活函數 h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) #進行max-pooling #28x28的圖片第一次卷積后還是28x28 第一次池化后變為14x14 #第二次卷積后 變為14x14 第二次池化后變為7x7 #通過上面操作后得到64張7x7的平面 #初始化第一個全連接層的權值 W_fc1 = weight_variable([7*7*64,1024])#上一層有7*7*64個神經元,全連接層有1024個神經元 b_fc1 = bias_variable([1024]) #1024個節點 #把第二個池化層的輸出扁平化為一維 h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64]) #求第一個全連接層的輸出 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1) #keep_prob用來表示神經元的輸出概率 keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob) #初始化第二個全連接層 W_fc2 = weight_variable([1024,10]) b_fc2 = bias_variable([10]) #計算輸出 prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2) #交叉熵代價函數 cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) #使用AdamOptimizer進行優化 train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #結果存放在一個布爾列表中 correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1)) #argmax返回一維張量中最大的值所在的位置 #求准確率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print (sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})) saver.restore(sess, '/home/bayes/logs/mnist_net.ckpt') print (sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0}))
結果 初始化后沒有經過訓練的參數准確率低 訓練后從模型中提取的參數准確率高
I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0 I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0: Y I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:03:00.0) 0.1117 0.9893
