在集群負載均衡時,Dubbo 提供了多種均衡策略,缺省為 random 隨機調用。我們還可以擴展自己的負責均衡策略,前提是你已經從一個小白變成了大牛,嘻嘻
1、Random LoadBalance
1.1 隨機,按權重設置隨機概率。
1.2 在一個截面上碰撞的概率高,但調用量越大分布越均勻,而且按概率使用權重后也比較均勻,有利於動態調整提供者權重。
1.3 源碼分析
package com.alibaba.dubbo.rpc.cluster.loadbalance; import java.util.List; import java.util.Random; import com.alibaba.dubbo.common.URL; import com.alibaba.dubbo.rpc.Invocation; import com.alibaba.dubbo.rpc.Invoker; /** * random load balance. * * @author qianlei * @author william.liangf */ public class RandomLoadBalance extends AbstractLoadBalance { public static final String NAME = "random"; private final Random random = new Random(); protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) { int length = invokers.size(); // 總個數 int totalWeight = 0; // 總權重 boolean sameWeight = true; // 權重是否都一樣 for (int i = 0; i < length; i++) { int weight = getWeight(invokers.get(i), invocation); totalWeight += weight; // 累計總權重 if (sameWeight && i > 0 && weight != getWeight(invokers.get(i - 1), invocation)) { sameWeight = false; // 計算所有權重是否一樣 } } if (totalWeight > 0 && ! sameWeight) { // 如果權重不相同且權重大於0則按總權重數隨機 int offset = random.nextInt(totalWeight); // 並確定隨機值落在哪個片斷上 for (int i = 0; i < length; i++) { offset -= getWeight(invokers.get(i), invocation); if (offset < 0) { return invokers.get(i); } } } // 如果權重相同或權重為0則均等隨機 return invokers.get(random.nextInt(length)); } }
說明:從源碼可以看出隨機負載均衡的策略分為兩種情況
a. 如果總權重大於0並且權重不相同,就生成一個1~totalWeight(總權重數)的隨機數,然后再把隨機數和所有的權重值一一相減得到一個新的隨機數,直到隨機 數小於0,那么此時訪問的服務器就是使得隨機數小於0的權重所在的機器
b. 如果權重相同或者總權重數為0,就生成一個1~length(權重的總個數)的隨機數,此時所訪問的機器就是這個隨機數對應的權重所在的機器
2、RoundRobin LoadBalance
2.1 輪循,按公約后的權重設置輪循比率。
2.2 存在慢的提供者累積請求的問題,比如:第二台機器很慢,但沒掛,當請求調到第二台時就卡在那,久而久之,所有請求都卡在調到第二台上。
2.3 源碼分析
package com.alibaba.dubbo.rpc.cluster.loadbalance; import java.util.ArrayList; import java.util.List; import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.ConcurrentMap; import com.alibaba.dubbo.common.URL; import com.alibaba.dubbo.common.utils.AtomicPositiveInteger; import com.alibaba.dubbo.rpc.Invocation; import com.alibaba.dubbo.rpc.Invoker; /** * Round robin load balance. * * @author qian.lei * @author william.liangf */ public class RoundRobinLoadBalance extends AbstractLoadBalance { public static final String NAME = "roundrobin"; private final ConcurrentMap<String, AtomicPositiveInteger> sequences = new ConcurrentHashMap<String, AtomicPositiveInteger>(); private final ConcurrentMap<String, AtomicPositiveInteger> weightSequences = new ConcurrentHashMap<String, AtomicPositiveInteger>(); protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) { String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName(); int length = invokers.size(); // 總個數 int maxWeight = 0; // 最大權重 int minWeight = Integer.MAX_VALUE; // 最小權重 for (int i = 0; i < length; i++) { int weight = getWeight(invokers.get(i), invocation); maxWeight = Math.max(maxWeight, weight); // 累計最大權重 minWeight = Math.min(minWeight, weight); // 累計最小權重 } if (maxWeight > 0 && minWeight < maxWeight) { // 權重不一樣 AtomicPositiveInteger weightSequence = weightSequences.get(key); if (weightSequence == null) { weightSequences.putIfAbsent(key, new AtomicPositiveInteger()); weightSequence = weightSequences.get(key); } int currentWeight = weightSequence.getAndIncrement() % maxWeight; List<Invoker<T>> weightInvokers = new ArrayList<Invoker<T>>(); for (Invoker<T> invoker : invokers) { // 篩選權重大於當前權重基數的Invoker if (getWeight(invoker, invocation) > currentWeight) { weightInvokers.add(invoker); } } int weightLength = weightInvokers.size(); if (weightLength == 1) { return weightInvokers.get(0); } else if (weightLength > 1) { invokers = weightInvokers; length = invokers.size(); } } AtomicPositiveInteger sequence = sequences.get(key); if (sequence == null) { sequences.putIfAbsent(key, new AtomicPositiveInteger()); sequence = sequences.get(key); } // 取模輪循 return invokers.get(sequence.getAndIncrement() % length); } }
說明:從源碼可以看出輪循負載均衡的算法是:
a. 如果權重不一樣時,獲取一個當前的權重基數,然后從權重集合中篩選權重大於當前權重基數的集合,如果篩選出的集合的長度為1,此時所訪問的機器就是集合里面的權重對應的機器
b. 如果權重一樣時就取模輪循
3、LeastActive LoadBalance
3.1 最少活躍調用數,相同活躍數的隨機,活躍數指調用前后計數差(調用前的時刻減去響應后的時刻的值)。
3.2 使慢的提供者收到更少請求,因為越慢的提供者的調用前后計數差會越大
3.3 對應的源碼
package com.alibaba.dubbo.rpc.cluster.loadbalance; import java.util.List; import java.util.Random; import com.alibaba.dubbo.common.Constants; import com.alibaba.dubbo.common.URL; import com.alibaba.dubbo.rpc.Invocation; import com.alibaba.dubbo.rpc.Invoker; import com.alibaba.dubbo.rpc.RpcStatus; /** * LeastActiveLoadBalance * * @author william.liangf */ public class LeastActiveLoadBalance extends AbstractLoadBalance { public static final String NAME = "leastactive"; private final Random random = new Random(); protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) { int length = invokers.size(); // 總個數 int leastActive = -1; // 最小的活躍數 int leastCount = 0; // 相同最小活躍數的個數 int[] leastIndexs = new int[length]; // 相同最小活躍數的下標 int totalWeight = 0; // 總權重 int firstWeight = 0; // 第一個權重,用於於計算是否相同 boolean sameWeight = true; // 是否所有權重相同 for (int i = 0; i < length; i++) { Invoker<T> invoker = invokers.get(i); int active = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName()).getActive(); // 活躍數 int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT); // 權重 if (leastActive == -1 || active < leastActive) { // 發現更小的活躍數,重新開始 leastActive = active; // 記錄最小活躍數 leastCount = 1; // 重新統計相同最小活躍數的個數 leastIndexs[0] = i; // 重新記錄最小活躍數下標 totalWeight = weight; // 重新累計總權重 firstWeight = weight; // 記錄第一個權重 sameWeight = true; // 還原權重相同標識 } else if (active == leastActive) { // 累計相同最小的活躍數 leastIndexs[leastCount ++] = i; // 累計相同最小活躍數下標 totalWeight += weight; // 累計總權重 // 判斷所有權重是否一樣 if (sameWeight && i > 0 && weight != firstWeight) { sameWeight = false; } } } // assert(leastCount > 0) if (leastCount == 1) { // 如果只有一個最小則直接返回 return invokers.get(leastIndexs[0]); } if (! sameWeight && totalWeight > 0) { // 如果權重不相同且權重大於0則按總權重數隨機 int offsetWeight = random.nextInt(totalWeight); // 並確定隨機值落在哪個片斷上 for (int i = 0; i < leastCount; i++) { int leastIndex = leastIndexs[i]; offsetWeight -= getWeight(invokers.get(leastIndex), invocation); if (offsetWeight <= 0) return invokers.get(leastIndex); } } // 如果權重相同或權重為0則均等隨機 return invokers.get(leastIndexs[random.nextInt(leastCount)]); } }
說明:源碼里面的注釋已經很清晰了,大致的意思就是活躍數越小的的機器分配到的請求越多
4、ConsistentHash LoadBalance
4.1 一致性 Hash,相同參數的請求總是發到同一提供者。
4.2 當某一台提供者掛時,原本發往該提供者的請求,基於虛擬節點,平攤到其它提供者,不會引起劇烈變動。
4.3 缺省只對第一個參數 Hash,如果要修改,請配置 <dubbo:parameter key="hash.arguments" value="0,1" />
4.4 缺省用 160 份虛擬節點,如果要修改,請配置 <dubbo:parameter key="hash.nodes" value="320" />
4.5 源碼分析
/* * Copyright 1999-2012 Alibaba Group. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.alibaba.dubbo.rpc.cluster.loadbalance; import java.io.UnsupportedEncodingException; import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; import java.util.List; import java.util.SortedMap; import java.util.TreeMap; import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.ConcurrentMap; import com.alibaba.dubbo.common.Constants; import com.alibaba.dubbo.common.URL; import com.alibaba.dubbo.rpc.Invocation; import com.alibaba.dubbo.rpc.Invoker; /** * ConsistentHashLoadBalance * * @author william.liangf */ public class ConsistentHashLoadBalance extends AbstractLoadBalance { private final ConcurrentMap<String, ConsistentHashSelector<?>> selectors = new ConcurrentHashMap<String, ConsistentHashSelector<?>>(); @SuppressWarnings("unchecked") @Override protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) { String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName(); int identityHashCode = System.identityHashCode(invokers); ConsistentHashSelector<T> selector = (ConsistentHashSelector<T>) selectors.get(key); if (selector == null || selector.getIdentityHashCode() != identityHashCode) { selectors.put(key, new ConsistentHashSelector<T>(invokers, invocation.getMethodName(), identityHashCode)); selector = (ConsistentHashSelector<T>) selectors.get(key); } return selector.select(invocation); } private static final class ConsistentHashSelector<T> { private final TreeMap<Long, Invoker<T>> virtualInvokers; private final int replicaNumber; private final int identityHashCode; private final int[] argumentIndex; public ConsistentHashSelector(List<Invoker<T>> invokers, String methodName, int identityHashCode) { this.virtualInvokers = new TreeMap<Long, Invoker<T>>(); this.identityHashCode = System.identityHashCode(invokers); URL url = invokers.get(0).getUrl(); this.replicaNumber = url.getMethodParameter(methodName, "hash.nodes", 160); String[] index = Constants.COMMA_SPLIT_PATTERN.split(url.getMethodParameter(methodName, "hash.arguments", "0")); argumentIndex = new int[index.length]; for (int i = 0; i < index.length; i ++) { argumentIndex[i] = Integer.parseInt(index[i]); } for (Invoker<T> invoker : invokers) { for (int i = 0; i < replicaNumber / 4; i++) { byte[] digest = md5(invoker.getUrl().toFullString() + i); for (int h = 0; h < 4; h++) { long m = hash(digest, h); virtualInvokers.put(m, invoker); } } } } public int getIdentityHashCode() { return identityHashCode; } public Invoker<T> select(Invocation invocation) { String key = toKey(invocation.getArguments()); byte[] digest = md5(key); Invoker<T> invoker = sekectForKey(hash(digest, 0)); return invoker; } private String toKey(Object[] args) { StringBuilder buf = new StringBuilder(); for (int i : argumentIndex) { if (i >= 0 && i < args.length) { buf.append(args[i]); } } return buf.toString(); } private Invoker<T> sekectForKey(long hash) { Invoker<T> invoker; Long key = hash; if (!virtualInvokers.containsKey(key)) { SortedMap<Long, Invoker<T>> tailMap = virtualInvokers.tailMap(key); if (tailMap.isEmpty()) { key = virtualInvokers.firstKey(); } else { key = tailMap.firstKey(); } } invoker = virtualInvokers.get(key); return invoker; } private long hash(byte[] digest, int number) { return (((long) (digest[3 + number * 4] & 0xFF) << 24) | ((long) (digest[2 + number * 4] & 0xFF) << 16) | ((long) (digest[1 + number * 4] & 0xFF) << 8) | (digest[0 + number * 4] & 0xFF)) & 0xFFFFFFFFL; } private byte[] md5(String value) { MessageDigest md5; try { md5 = MessageDigest.getInstance("MD5"); } catch (NoSuchAlgorithmException e) { throw new IllegalStateException(e.getMessage(), e); } md5.reset(); byte[] bytes = null; try { bytes = value.getBytes("UTF-8"); } catch (UnsupportedEncodingException e) { throw new IllegalStateException(e.getMessage(), e); } md5.update(bytes); return md5.digest(); } } }
說明:根據傳遞的參數進行hash然后調用服務,如果兩次傳遞的參數一樣就調用的是同一個機器上的服務
5、dubbo官方的文檔的負載均衡配置示例
服務端服務級別
<dubbo:service interface="..." loadbalance="roundrobin" />
客戶端服務級別
<dubbo:reference interface="..." loadbalance="roundrobin" />
服務端方法級別
<dubbo:service interface="..."> <dubbo:method name="..." loadbalance="roundrobin"/> </dubbo:service>
客戶端方法級別
<dubbo:reference interface="..."> <dubbo:method name="..." loadbalance="roundrobin"/> </dubbo:reference>
