數據倉庫:Mysql大量數據快速導出


背景

寫這篇文章主要是介紹一下我做數據倉庫ETL同步的過程中遇到的一些有意思的內容和提升程序運行效率的過程。

關系型數據庫:

  項目初期:游戲的運營數據比較輕量,相關的運營數據是通過Java后台程序聚合查詢關系型數據庫MySQL完全可以應付,系統通過定時任務每日統計相關數據,等待運營人員查詢即可。

  項目中后期:隨着開服數量增多,玩家數量越來越多,數據庫的數據量越來越大,運營后台查詢效率越來越低。對於普通的關系型來說,如MySQL,當單表存儲記錄數超過500萬條后,數據庫查詢性能將變得極為緩慢,而往往我們都不會只做單表查詢,還有多表join。這里假如有100個游戲服,每個服有20張表,而每個表有500W數據,那么:

  總數據量 = 100 * 20 * 500W = 10億  按當時的庫表結構,換算成磁盤空間,約為100G左右

我的天吶,現在沒有單機的內存能同一時間載入100G的數據

https://www.zhihu.com/question/19719997

  所以,考慮到這一點,Hive被提出來解決難題!

 

數據倉庫

Hive適合做海量數據的數據倉庫工具, 因為數據倉庫中的數據有這兩個特點:最全的歷史數據(海量)、相對穩定的;所謂相對穩定,指的是數據倉庫不同於業務系統數據庫,數據經常會被更新,數據一旦進入數據倉庫,很少會被更新和刪除,只會被大量查詢。而Hive,也是具備這兩個特點

二、項目架構設計

 在這里先說下初期項目架構的探索,因為數據流向,其實最終就是從MYSQL--------->Hive中,我使用的是Jdbc方式。為什么不使用下列工具呢?

  • Sqoop, 因為該游戲每個服有將近80張表,然后又有很多服,以后還會更多,而每個服的庫表數據結構其實是完全一樣的,只是IP地址不一樣,使用Sqoop的話,將會需要維護越來越多的腳本,再者Sqoop沒法處理原始數據中一些帶有Hive表定義的行列分隔符
  • DataX 阿里開源的數據同步中間件,沒做過詳細研究

1、全局緩存隊列

使用生產者消費者模型,中間使用內存,數據落地成txt

 

 

首先生產者通過Jdbc獲取源數據內容,放入固定大小的緩存隊列,同時消費者不斷的從緩存讀取數據,根據不同的數據類型分別讀取出來,並逐條寫入相應的txt文件。

速度每秒約8000條。

這樣做表面上看起來非常美好,流水式的處理,來一條處理一下,可是發現消費的速度遠遠趕不上生產的速度,生產出來的數據會堆積在緩存隊列里面,假如隊列不固定長度的話,這時候還會大量消耗內存,所以為了提升寫入的速度,決定采用下一種方案

 

2、每一張表一個緩存隊列及writer接口

每張表各自起一個生產者消費者模型,消費者啟動時初始化相應的writer接口,架構設計如下:

 

table1的生產者通過Jdbc獲取源數據內容,放入table自帶的固定大小的緩存隊列,同時table1相應的消費者不斷的從緩存讀取數據,根據不同的數據類型分別讀取出來,並逐條寫入相應的txt文件。

速度每秒約2W條。

 這樣生產者線程可以並發的進行,通過控制生產者線程的數量,可以大大提高處理的效率, 項目關鍵代碼如下:

1)線程池

/***
 * 
 * 
 * @描述 任務線程池
 */
public class DumpExecuteService {

    private static ExecutorService dumpServerWorkerService; // 游戲服任務
    private static ExecutorService dumpTableWorkerService; // 表數據任務
    private static ExecutorService dumpReaderWorkerService; // 讀取數據任務
    private static ExecutorService dumpWriterWorkerService; // 寫數據結果任務

    /***
     * 初始化任務線程池
     * @param concurrencyDBCount 並發數量
     */
    public synchronized static void startup(int concurrencyDBCount) {

        if (dumpServerWorkerService != null)
            return;

        if (concurrencyDBCount > 2)
            concurrencyDBCount = 2; // 最多支持兩個數據庫任務並發執行

        if (concurrencyDBCount < 1)
            concurrencyDBCount = 1;

        dumpServerWorkerService = Executors.newFixedThreadPool(concurrencyDBCount, new NamedThreadFactory(
                "DumpExecuteService.dumpServerWorkerService" + System.currentTimeMillis()));
        dumpTableWorkerService = Executors.newFixedThreadPool(2, new NamedThreadFactory("DumpExecuteService.dumpTableWorkerService"
                + System.currentTimeMillis()));
        dumpWriterWorkerService = Executors.newFixedThreadPool(8, new NamedThreadFactory("DumpExecuteService.dumpWriterWorkerService"
                + System.currentTimeMillis()));
        dumpReaderWorkerService = Executors.newFixedThreadPool(2, new NamedThreadFactory("DumpExecuteService.dumpReaderWorkerService"
                + System.currentTimeMillis()));
    }

    public static Future<Integer> submitDumpServerWorker(DumpServerWorkerLogic worker) {
        return dumpServerWorkerService.submit(worker);
    }

    public static Future<Integer> submitDumpWriteWorker(DumpWriteWorkerLogic worker) {
        return dumpWriterWorkerService.submit(worker);
    }

    public static Future<Integer> submitDumpReadWorker(DumpReadWorkerLogic worker) {
        return dumpReaderWorkerService.submit(worker);
    }

    public static Future<Integer> submitDumpTableWorker(DumpTableWorkerLogic worker) {
        return dumpTableWorkerService.submit(worker);
    }

    /***
     * 關閉線程池
     */
    public synchronized static void shutdown() {

        //執行線程池關閉...
    }
}

說明:該類定義4個線程池,分別用於執行不同的任務

2)游戲服任務線程池

/**
 * 1) 獲取 游戲服log庫數據庫連接 
2) 依次處理單張表
*/ public class DumpServerWorkerLogic extends AbstractLogic implements Callable<Integer> { private static Logger logger = LoggerFactory.getLogger(DumpServerWorkerLogic.class); private final ServerPO server;// 數據庫 private final String startDate;// 開始時間 private SourceType sourceType;// 數據來源類型 private Map<String, Integer> resultDBMap;// 表記錄計數 private GameType gameType; public DumpServerWorkerLogic(ServerPO server, String startDate, SourceType sourceType, Map<String, Integer> resultDBMap, GameType gameType) { CheckUtil.checkNotNull("DumpServerWorkerLogic.server", server); CheckUtil.checkNotNull("DumpServerWorkerLogic.startDate", startDate); CheckUtil.checkNotNull("DumpServerWorkerLogic.sourceType", sourceType); CheckUtil.checkNotNull("DumpServerWorkerLogic.resultDBMap", resultDBMap); CheckUtil.checkNotNull("DumpServerWorkerLogic.gameType", gameType); this.server = server; this.startDate = startDate; this.sourceType = sourceType; this.resultDBMap = resultDBMap; this.gameType = gameType; } @Override public Integer call() { // 獲取連接, 並取得該庫的所有表 Connection conn = null; try { conn = JdbcUtils.getDbConnection(server); } catch (Exception e) { throw new GameRuntimeException(e.getMessage(), e); } List<String> tableNames = null; DumpDbInfoBO dumpDbInfoBO = DumpConfig.getDumpDbInfoBO(); int totalRecordCount = 0; try { switch (this.sourceType) { case GAME_LOG: tableNames = JdbcUtils.getAllTableNames(conn); break; case INFOCENTER: tableNames = dumpDbInfoBO.getIncludeInfoTables(); tableNames.add("pay_action"); break; case EVENT_LOG: tableNames = new ArrayList<String>(); Date date = DateTimeUtil.string2Date(startDate, "yyyy-MM-dd"); String sdate = DateTimeUtil.date2String(date, "yyyyMMdd"); String smonth = DateTimeUtil.date2String(date, "yyyyMM"); tableNames.add("log_device_startup" + "_" + smonth); tableNames.add("log_device" + "_" + sdate); break; } // 遍歷table for (String tableName : tableNames) { // 過濾 if (dumpDbInfoBO.getExcludeTables().contains(tableName)) continue; DumpTableWorkerLogic tableTask = new DumpTableWorkerLogic(conn, server, tableName, startDate, resultDBMap, gameType, sourceType); Future<Integer> tableFuture = DumpExecuteService.submitDumpTableWorker(tableTask); int count = tableFuture.get(); totalRecordCount += count; logger.info(String.format("DumpServerWorkerLogic %s-%s.%s be done", startDate, server.getLogDbName(), tableName)); } return totalRecordCount; } catch (Exception e) { throw new GameRuntimeException(e, "DumpTableWorkerLogic fail. server={%s}, errorMsg={%s} ",server.getId(), e.getMessage()); } finally { JdbcUtils.closeConnection(conn); } } }

 

 3)表處理任務,一個表一個

 

/***
 * 
 * 
 * @描述 創建一個表查詢結果寫任務 (一個表一個)
 */
public class DumpTableWorkerLogic implements Callable<Integer> {
    private static Logger logger = LoggerFactory.getLogger(DumpTableWorkerLogic.class);

    private final String tableName;
    private final Connection conn;

    private ServerPO server;

    private String startDate;

    private Map<String, Integer> resultDBMap;// 表記錄計數

    private GameType gameType;

    private SourceType sourceType;// 數據來源類型

    public DumpTableWorkerLogic(Connection conn, ServerPO server, String tableName, String startDate, Map<String, Integer> resultDBMap,
            GameType gameType, SourceType sourceType) {
        CheckUtil.checkNotNull("DumpTableWorkerLogic.conn", conn);
        CheckUtil.checkNotNull("DumpTableWorkerLogic.tableName", tableName);
        CheckUtil.checkNotNull("DumpTableWorkerLogic.server", server);
        CheckUtil.checkNotNull("DumpTableWorkerLogic.startDate", startDate);
        CheckUtil.checkNotNull("DumpTableWorkerLogic.resultDBMap", resultDBMap);
        CheckUtil.checkNotNull("DumpTableWorkerLogic.gameType", gameType);
        CheckUtil.checkNotNull("DumpServerWorkerLogic.sourceType", sourceType);

        this.conn = conn;
        this.tableName = tableName;
        this.server = server;
        this.startDate = startDate;
        this.resultDBMap = resultDBMap;
        this.gameType = gameType;
        this.sourceType = sourceType;

        logger.info("DumpTableWorkerLogic[{}] Reg", tableName);
    }

    @Override
    public Integer call() {
        logger.info("DumpTableWorkerLogic[{}] Start", tableName);

        // 寫檢查結果任務
        DumpWriteWorkerLogic writerWorker = new DumpWriteWorkerLogic(server, tableName, startDate, resultDBMap, gameType,
                sourceType);
        Future<Integer> writeFuture = DumpExecuteService.submitDumpWriteWorker(writerWorker);
        logger.info("DumpTableWorkerLogic[{}] writer={}", tableName);

        // 數據查詢任務
        DumpReadWorkerLogic readerWorker = new DumpReadWorkerLogic(conn, tableName, writerWorker, startDate);
        DumpExecuteService.submitDumpReadWorker(readerWorker);
        logger.info("DumpTableWorkerLogic[{}] reader={}", tableName);

        try {
            int writeCount = writeFuture.get();
            logger.info("DumpTableWorkerLogic[{}] ---" + startDate + "---" + server.getId() + "---" + tableName + "---導出數據條數---"
                    + writeCount);
            return writeCount;
        }  catch (Exception e) {
            throw new GameRuntimeException(e, "DumpTableWorkerLogic fail. tableName={%s}, errorMsg={%s} ",tableName, e.getMessage());
        }
    }

}

 

 

4)單表讀取任務線程

/***
 * mysql讀取數據任務
 * 
 */
public class DumpReadWorkerLogic implements Callable<Integer> {

    private static Logger logger = LoggerFactory.getLogger(DumpReadWorkerLogic.class);

    private String tableName;

    private final Connection conn;

    private DumpWriteWorkerLogic writerWorker; // 寫結果數據任務

    private String startDate;// 開始導出日期

    private static final int LIMIT = 50000;// 限制sql一次讀出條數

    public DumpReadWorkerLogic(Connection conn, String tableName, DumpWriteWorkerLogic writerWorker, String startDate) {
        CheckUtil.checkNotNull("MysqlDataReadWorker.conn", conn);
        CheckUtil.checkNotNull("MysqlDataReadWorker.tableName", tableName);
        CheckUtil.checkNotNull("MysqlDataReadWorker.startDate", startDate);

        this.conn = conn;
        this.tableName = tableName;
        this.writerWorker = writerWorker;
        this.startDate = startDate;

        logger.info("DumpReadWorkerLogic Reg. tableName={}", this.tableName);
    }

    @Override
    public Integer call() {
        try {
            List<Map<String, Object>> result = JdbcUtils.queryForList(conn, "show full fields from " + tableName);

            int index = 0;
            String querySql = "";

            int totalCount = 0;
            while (true) {
                int offset = index * LIMIT;
                querySql = DumpLogic.getTableQuerySql(result, tableName, true, startDate) + " limit " + offset + "," + LIMIT;
                int row = DumpLogic.query(conn, querySql, writerWorker);
                totalCount += row;
                logger.info("tableName=" + tableName + ", offset=" + offset + ", index=" + index + ", row=" + row + ", limit=" + LIMIT);
                if (row < LIMIT)
                    break;
                index++;
            }
            writerWorker.prepareClose();
            logger.info(startDate + "---" + tableName + "---Read.End");
            return totalCount;
        }
        catch (Exception e) {
            throw new GameRuntimeException(e, "MysqlDataReadWorker fail. tableName={%s}, errorMsg={%s} ",tableName, e.getMessage());
        }
    }

}

 

5)單表寫入任務線程

/***
 * 
 * 
 * @描述 mysql數據導出任務
 */
public class DumpWriteWorkerLogic implements Callable<Integer> {

    private static final Logger logger = LoggerFactory.getLogger(DumpWriteWorkerLogic.class);
    private String tableName;// 表名

    private AtomicBoolean alive; // 線程是否活着

    private BufferedWriter writer;

    private ArrayBlockingQueue<String> queue; // 消息隊列

    private ServerPO server;// 服務器

    private String startDate;// 開始時間

    private Map<String, Integer> resultDBMap;// 當天某服某表數量記錄

    private GameType gameType;

    private SourceType sourceType;// 數據來源類型

    public DumpWriteWorkerLogic(ServerPO server, String tableName, String startDate, Map<String, Integer> resultDBMap, GameType gameType,
            SourceType sourceType) {
        CheckUtil.checkNotNull("DumpWriteWorkerLogic.tableName", tableName);
        CheckUtil.checkNotNull("DumpWriteWorkerLogic.server", server);
        CheckUtil.checkNotNull("DumpWriteWorkerLogic.startDate", startDate);
        CheckUtil.checkNotNull("DumpWriteWorkerLogic.resultDBMap", resultDBMap);
        CheckUtil.checkNotNull("DumpWriteWorkerLogic.gameType", gameType);
        CheckUtil.checkNotNull("DumpWriteWorkerLogic.sourceType", sourceType);

        this.tableName = tableName;
        this.server = server;
        this.startDate = startDate;
        this.queue = new ArrayBlockingQueue<>(65536);
        this.alive = new AtomicBoolean(true);
        this.gameType = gameType;
        this.sourceType = sourceType;
        this.writer = createWriter();
        this.resultDBMap = resultDBMap;

        logger.info("DumpWriteWorkerLogic Reg. tableName={}", this.tableName);
    }

    /***
     * 創建writer, 若文件不存在,會新建文件
     * 
     * @param serverId
     * @return
     */
    private BufferedWriter createWriter() {
        try {
            File toFile = FileUtils.getFilenameOfDumpTable(sourceType, tableName, startDate, gameType, ".txt");
            if (!toFile.exists()) {
                FileUtils.createFile(sourceType, tableName, startDate, gameType);
            }
            return new BufferedWriter(new OutputStreamWriter(new FileOutputStream(toFile, true), Charsets.UTF_8), 5 * 1024 * 1024);
        } catch (Exception e) {
            throw new GameRuntimeException(e, "DumpWriteWorkerLogic createWriter fail. server={%s}, errorMsg={%s} ",server.getId(), e.getMessage());
        }
    }

    /***
     * 寫入文件
     * 
     * @param line
     *            一條記錄
     */
    private void writeToFile(String line) {
        try {
            this.writer.write(line + "\n");
        } catch (Exception e) {
            throw new GameRuntimeException(e, "DumpWriteWorkerLogic writeToFile fail. errorMsg={%s} ", e.getMessage());
        }
    }

    /**
     * 記錄數據到消息隊列; 如果消息隊列滿了, 會阻塞直到可以put為止
     * 
     * @param result
     */
    public void putToWriterQueue(String line) {

        CheckUtil.checkNotNull("DumpWriteWorkerLogic putToWriterQueue", line);

        try {
            queue.put(line);
        } catch (InterruptedException e) {
            throw new GameRuntimeException(e, "DumpWriteWorkerLogic putToWriterQueue fail. errorMsg={%s} ", e.getMessage());
        }
    }

    /**
     * 准備關閉 (通知一下"需要處理的用戶數據都處理完畢了"; task 寫完數據, 就可以完畢了)
     */
    public void prepareClose() {
        alive.set(false);
    }

    @Override
    public Integer call() {
        logger.info("DumpWriteWorkerLogic Start. tableName={}", this.tableName);
        try {
            int totalCount = 0;
            while (alive.get() || !queue.isEmpty()) {
                List<String> dataList = new ArrayList<String>();
                queue.drainTo(dataList);
                int count = processDataList(dataList);
                totalCount += count;
            }
            logger.info("DumpWriteWorkerLogic ---" + startDate + "---" + tableName + "---Writer.End");
            return totalCount;
        } catch (Exception exp) {
            throw new GameRuntimeException(exp, "DumpWriteWorkerLogic call() fail. errorMsg={%s} ", exp.getMessage());
        } finally {
            FileUtil.close(this.writer);
        }
    }

    /***
     * 處理數據:寫入本地文件及map
     * 
     * @param dataList
     *            數據集合
     * @return
     */
    private int processDataList(List<String> dataList) {
        int totalCount = 0;

        // 所有記錄
        String key = server.getId() + "#" + tableName + "#" + sourceType.getIndex();
        if (dataList != null && dataList.size() > 0) {

            for (String line : dataList) {

                // 按行寫入文件
                writeToFile(line);

                // 記錄到result_data_record_count
                if (resultDBMap.get(key) != null) {
                    resultDBMap.put(key, resultDBMap.get(key) + 1);
                }
                else {
                    resultDBMap.put(key, 1);
                }

                totalCount++;
            }
        }

        return totalCount;
    }

}

內存優化

1、使用Jdbc方式獲取數據,如果這個數據表比較大,那么獲取數據的速度特別慢;

2、這個進程還會占用非常大的內存,並且GC不掉。分析原因,Jdbc獲取數據的時候,會一次將所有數據放入到內存,如果同步的數據表非常大,那么甚至會將內存撐爆。

那么優化的方法是讓Jdbc不是一次全部將數據拿到內存,而是分頁獲取,每次最大limit數設置為50000,請參考read線程。

 

經過這種架構優化后,5000W數據大約花費40min可完成導出

 

說明:

因為本文只是記錄項目的設計過程,詳細的代碼后面會開源。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM