https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/0014317568446245b3e1c8837414168bcd2d485e553779e000
在Python中,代碼不是越多越好,而是越少越好。代碼不是越復雜越好,而是越簡單越好。
基於這一思想,我們來介紹Python中非常有用的高級特性,1行代碼能實現的功能,
決不寫5行代碼。請始終牢記,代碼越少,開發效率越高。
高級特性
1.切片
這種經常取指定索引范圍的操作,用循環十分繁瑣,因此,Python提供了切片(Slice)操作符,能大大簡化這種操作。
>>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']
>>> L[0:3]
['Michael', 'Sarah', 'Tracy']
L[0:3]表示,從索引0開始取,直到索引3為止,但不包括索引3。即索引0,1,2,正好是3個元素。
如果第一個索引是0,還可以省略
>>> L[1:3]
L[-1]取倒數第一個元素,那么它同樣支持倒數切片
>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']
記住倒數第一個元素的索引是-1
通過切片輕松取出某一段數列。比如前10個數
>>> L = list(range(100))
>>> L[:10]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
后10個數:
>>> L[-10:]
前11-20個數:
>>> L[10:20]
前10個數,每兩個取一個
>>> L[:10:2]
所有數,每5個取一個:
>>> L[::5]
甚至什么都不寫,只寫[:]就可以原樣復制一個list
>>> L[:]
tuple也是一種list,唯一區別是tuple不可變。因此,tuple也可以用切片操作,只是操作的結果仍是tuple
字符串'xxx'也可以看成是一種list,每個元素就是一個字符。因此,字符串也可以用切片操作,只是操作結果仍是字符串
>>> 'ABCDEFG'[:3]
'ABC'
>>> 'ABCDEFG'[::2]
'ACEG'
針對字符串提供了很多各種截取函數(例如,substring),其實目的就是對字符串切片。
Python沒有針對字符串的截取函數,只需要切片一個操作就可以完成,非常簡單。
2.迭代
給定一個list或tuple,我們可以通過for循環來遍歷這個list或tuple,這種遍歷我們稱為迭代(Iteration)。
迭代是通過for ... in來完成的,而很多語言比如C或者Java,迭代list是通過下標完成的,比如Java代碼:
for (i=0; i<list.length; i++) {
n = list[i];
}
因為dict的存儲不是按照list的方式順序排列,所以,迭代出的結果順序很可能不一樣。
默認情況下,dict迭代的是key。
如果要迭代value,可以用for value in d.values(),
如果要同時迭代key和value,可以用for k, v in d.items()。
由於字符串也是可迭代對象,因此,也可以作用於for循環:
>>> for ch in 'ABC':
... print(ch)
所以,當我們使用for循環時,只要作用於一個可迭代對象,for循環就可以正常運行,
而我們不太關心該對象究竟是list還是其他數據類型。
那么,如何判斷一個對象是可迭代對象呢?方法是通過collections模塊的Iterable類型判斷:
>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整數是否可迭代
False
如果要對list實現類似Java那樣的下標循環怎么辦?Python內置的enumerate函數可以把一個list變成索引-元素對,
這樣就可以在for循環中同時迭代索引和元素本身:
>>> for i, value in enumerate(['A', 'B', 'C']):
... print(i, value)
...
0 A
1 B
2 C
上面的for循環里,同時引用了兩個變量,在Python里是很常見的,比如下面的代碼:
>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
... print(x, y)
...
1 1
2 4
3 9
小結:
任何可迭代對象都可以作用於for循環,包括我們自定義的數據類型,只要符合迭代條件,就可以使用for循環。
3.列表生成式
列表生成式即List Comprehensions,是Python內置的非常簡單卻強大的可以用來創建list的生成式。
舉個例子:要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11)):
>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循環:
>>> L = []
>>> for x in range(1, 11):
... L.append(x * x)
...
>>> L
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
但是循環太繁瑣,而列表生成式則可以用一行語句代替循環生成上面的list:
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
寫列表生成式時,把要生成的元素x * x放到前面,后面跟for循環,就可以把list創建出來,十分有用,多寫幾次,很快就可以熟悉這種語法。
for循環后面還可以加上if判斷,這樣我們就可以篩選出僅偶數的平方:
>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
還可以使用兩層循環,可以生成全排列:
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
運用列表生成式,可以寫出非常簡潔的代碼。例如,列出當前目錄下的所有文件和目錄名,可以通過一行代碼實現:
>>> import os # 導入os模塊,模塊的概念后面講到
>>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目錄
['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents', 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 'Public', 'VirtualBox VMs', 'Workspace', 'XCode']
for循環其實可以同時使用兩個甚至多個變量,比如dict的items()可以同時迭代key和value:
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> for k, v in d.items():
... print(k, '=', v)
...
y = B
x = A
z = C
列表生成式也可以使用兩個變量來生成list
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.items()]
['y=B', 'x=A', 'z=C']
把一個list中所有的字符串變成小寫:
>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']
4.生成器
通過列表生成式,我們可以直接創建一個列表。但是,受到內存限制,列表容量肯定是有限的。
而且,創建一個包含100萬個元素的列表,不僅占用很大的存儲空間,如果我們僅僅需要訪問前面幾個元素,
那后面絕大多數元素占用的空間都白白浪費了。
如果列表元素可以按照某種算法推算出來,那我們是否可以在循環的過程中不斷推算出后續的元素呢?
這樣就不必創建完整的list,從而節省大量的空間。在Python中,這種一邊循環一邊計算的機制,稱為生成器:generator。
要創建一個generator,有很多種方法。
第一種方法很簡單,只要把一個列表生成式的[]改成(),就創建了一個generator:
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>
創建L和g的區別僅在於最外層的[]和(),L是一個list,而g是一個generator。
如果要一個一個打印出來,可以通過next()函數獲得generator的下一個返回值
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
generator保存的是算法,每次調用next(g),就計算出g的下一個元素的值,直到計算到最后一個元素,
沒有更多的元素時,拋出StopIteration的錯誤。
當然,上面這種不斷調用next(g)實在是太變態了,正確的方法是使用for循環,因為generator也是可迭代對象:
>>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
...
0
1
4
9
16
25
36
49
64
8
我們創建了一個generator后,基本上永遠不會調用next(),而是通過for循環來迭代它,並且不需要關心StopIteration的錯誤。
定義generator的另一種方法。
如果一個函數定義中包含yield關鍵字,那么這個函數就不再是一個普通函數,而是一個generator:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'
這里,最難理解的就是generator和函數的執行流程不一樣。
函數是順序執行,遇到return語句或者最后一行函數語句就返回。而變成generator的函數,
在每次調用next()的時候執行,遇到yield語句返回,再次執行時從上次返回的yield語句處繼續執行。
舉個簡單的例子,定義一個generator,依次返回數字1,3,5:
def odd():
print('step 1')
yield 1
print('step 2')
yield(3)
print('step 3')
yield(5)
調用該generator時,首先要生成一個generator對象,然后用next()函數不斷獲得下一個返回值:
>>> o = odd()
>>> next(o)
step 1
1
>>> next(o)
step 2
3
>>> next(o)
step 3
5
>>> next(o)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
小結
generator是非常強大的工具,在Python中,可以簡單地把列表生成式改成generator,也可以通過函數實現復雜邏輯的generator。
要理解generator的工作原理,它是在for循環的過程中不斷計算出下一個元素,並在適當的條件結束for循環。對於函數改成的generator來說,遇到return語句或者執行到函數體最后一行語句,就是結束generator的指令,for循環隨之結束。
請注意區分普通函數和generator函數,普通函數調用直接返回結果:
>>> r = abs(6)
>>> r
6
generator函數的“調用”實際返回一個generator對象:
>>> g = fib(6)
>>> g
<generator object fib at 0x1022ef948>
5.迭代器
我們已經知道,可以直接作用於for循環的數據類型有以下幾種:
一類是集合數據類型,如list、tuple、dict、set、str等;
一類是generator,包括生成器和帶yield的generator function。
這些可以直接作用於for循環的對象統稱為可迭代對象:Iterable。
可以使用isinstance()判斷一個對象是否是Iterable對象:
>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False
而生成器不但可以作用於for循環,還可以被next()函數不斷調用並返回下一個值,直到最后拋出StopIteration錯誤表示無法繼續返回下一個值了。
可以被next()函數調用並不斷返回下一個值的對象稱為迭代器:Iterator。
可以使用isinstance()判斷一個對象是否是Iterator對象:
>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False
生成器都是Iterator對象,但list、dict、str雖然是Iterable,卻不是Iterator。
把list、dict、str等Iterable變成Iterator可以使用iter()函數:
>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True
你可能會問,為什么list、dict、str等數據類型不是Iterator?
這是因為Python的Iterator對象表示的是一個數據流,Iterator對象可以被next()函數調用並不斷返回下一個數據,
直到沒有數據時拋出StopIteration錯誤。可以把這個數據流看做是一個有序序列,但我們卻不能提前知道序列的長
度,只能不斷通過next()函數實現按需計算下一個數據,所以Iterator的計算是惰性的,只有在需要返回下一個數據
時它才會計算。
Iterator甚至可以表示一個無限大的數據流,例如全體自然數。而使用list是永遠不可能存儲全體自然數的。
小結
凡是可作用於for循環的對象都是Iterable類型;
凡是可作用於next()函數的對象都是Iterator類型,它們表示一個惰性計算的序列;
集合數據類型如list、dict、str等是Iterable但不是Iterator,不過可以通過iter()函數獲得一個Iterator對象。
Python的for循環本質上就是通過不斷調用next()函數實現的,例如:
for x in [1, 2, 3, 4, 5]:
pass
實際上完全等價於:
# 首先獲得Iterator對象:
it = iter([1, 2, 3, 4, 5])
# 循環:
while True:
try:
# 獲得下一個值:
x = next(it)
except StopIteration:
# 遇到StopIteration就退出循環
break