專題 查找與排序的Java代碼實現(一)
查找(Searching)
線性查找(linear search)
屬於無序查找算法,適合於存儲結構為順序存儲或鏈接存儲的線性表。
基本思想:從數據結構線形表的一端開始,順序掃描,依次將掃描到的結點關鍵字與給定值k相比較,若相等則表示查找成功;若掃描結束仍沒有找到關鍵字等於k的結點,表示查找失敗。
時間復雜度:O(n)
具體代碼:
//-------------------------------------------------------------------------
// Searches the specified array of objects using a linear search 線性查找
// algorithm. Returns null if the target is not found.
//-------------------------------------------------------------------------
public static Comparable linearSearch (Comparable[] data,
Comparable target) {
Comparable result = null;
int index = 0;
while (result == null && index < data.length){
if (data[index].compareTo(target) == 0)
result = data[index];
index++;
}
return result;
}
二分查找(binary search)
屬於有序查找算法,元素必須是有序的,如果是無序的則要先進行排序操作。
基本思想:用給定值k先與中間結點的關鍵字比較,中間結點把線形表分成兩個子表,若相等則查找成功;若不相等,再根據k與該中間結點關鍵字的比較結果確定下一步查找哪個子表,這樣遞歸進行,直到查找到或查找結束發現表中沒有這樣的結點。
時間復雜度:O(log2n)
具體代碼:
//--------------------------------------------------------------------------
// Searches the specified array of objects using a binary search 二分查找
// algorithm. Returns null if the target is not found.
//--------------------------------------------------------------------------
public static Comparable BinarySearch(Comparable[] data,
Comparable target){
Comparable result = null;
int first = 0, last = data.length-1, mid;
while (result == null && first <= last){
mid = (first + last) / 2; // determine midpoint
if (data[mid].compareTo(target)==0)
result = data[mid];
else
if (data[mid].compareTo(target) == 0)
result = mid - 1;
else
first = mid + 1;
}
return result;
}
排序(Sorting)
選擇排序(selection sort)
基本思想:對一個數列進行排序時,每次從剩余的序列中挑選出最小的記錄,放到序列開始位置,以此類推,直到數列的所有數字都已經放到最終位置為止。
時間復雜度:O(n^2)
具體代碼:
//-----------------------------------------------------------------
// Sorts the specified array of integers using the selection
// sort algorithm.
//-----------------------------------------------------------------
public static void selectionSort (Comparable[] data) {
int min;
for (int index = 0; index < data.length-1; index++) {
min = index;
for (int scan = index+1; scan < data.length; scan++)
if (data[scan].compareTo(data[min]) < 0)
min = scan;
swap (data, min, index);
}
}
//-----------------------------------------------------------------
// Swaps two elements in the specified array.
//-----------------------------------------------------------------
private static void swap (Comparable[] data, int index1, int index2)
{
Comparable temp = data[index1];
data[index1] = data[index2];
data[index2] = temp;
}
插入排序(insertion sort)
基本思想:每次從數列中取一個還沒有取出過的數,並按照大小關系插入到已經取出的數中使得已經取出的數仍然有序。
時間復雜度:O(n^2)
具體代碼:
//-----------------------------------------------------------------
// Sorts the specified array of objects using an insertion
// sort algorithm.
//-----------------------------------------------------------------
public static void insertionSort (Comparable[] data)
{
for (int index = 1; index < data.length; index++)
{
Comparable key = data[index];
int position = index;
// Shift larger values to the right
while (position > 0 && data[position-1].compareTo(key) > 0)
{
data[position] = data[position-1];
position--;
}
data[position] = key;
}
}
冒泡排序(bubble sort)
屬於交換排序
基本思想:經過一趟冒泡排序之后,序列中最大的記錄到了序列最后,而較小的記錄位置均向前移動了
時間復雜度:O(n^2)
具體代碼:
//-----------------------------------------------------------------
// Sorts the specified array of objects using a bubble sort
// algorithm.
//-----------------------------------------------------------------
public static void bubbleSort (Comparable[] data)
{
int position, scan;
for (position = data.length - 1; position >= 0; position--)
{
for (scan = 0; scan <= position - 1; scan++)
if (data[scan].compareTo(data[scan+1]) > 0)
swap (data, scan, scan+1);
}
}
快速排序(quick sort)
屬於交換排序,快速排序是對冒泡排序的一種改進。
基本思想:將待排序序列分成兩部分,其中一部分的記錄都比另一部分的記錄小,隨后分別對這兩部分再分成兩部分,使一部分的記錄都小於另一部分,如此反復最終使整個序列最終有序。
時間復雜度:O(n*log2n)
具體代碼:
//-----------------------------------------------------------------
// Sorts the specified array of objects using the quick sort
// algorithm.
//-----------------------------------------------------------------
public static void quickSort (Comparable[] data, int min, int max)
{
int pivot;
if (min < max)
{
pivot = partition (data, min, max); // make partitions
quickSort(data, min, pivot-1); // sort left partition
quickSort(data, pivot+1, max); // sort right partition
}
}
//-----------------------------------------------------------------
// Creates the partitions needed for quick sort.
//-----------------------------------------------------------------
private static int partition (Comparable[] data, int min, int max)
{
// Use first element as the partition value
Comparable partitionValue = data[min];
int left = min;
int right = max;
while (left < right)
{
// Search for an element that is > the partition element
while (data[left].compareTo(partitionValue) <= 0 && left < right)
left++;
// Search for an element that is < the partitionelement
while (data[right].compareTo(partitionValue) > 0)
right--;
if (left < right)
swap(data, left, right);
}
// Move the partition element to its final position
swap (data, min, right);
return right;
}
歸並排序(merge sort)
基本思想:重復調用歸並算法,首先將單個記錄視為一個有序序列,然后不斷將相鄰的兩個有序序列合並得到新的有序序列,如此反復,最后得到一個整體有序的序列
時間復雜度:O(n*log2n)
具體代碼:
//-----------------------------------------------------------------
// Sorts the specified array of objects using the merge sort
// algorithm.
//-----------------------------------------------------------------
public static void mergeSort (Comparable[] data, int min, int max)
{
if (min < max)
{
int mid = (min + max) / 2;
mergeSort (data, min, mid);
mergeSort (data, mid+1, max);
merge (data, min, mid, max);
}
}
//-----------------------------------------------------------------
// Sorts the specified array of objects using the merge sort
// algorithm.
//-----------------------------------------------------------------
public static void merge (Comparable[] data, int first, int mid,
int last)
{
Comparable[] temp = new Comparable[data.length];
int first1 = first, last1 = mid; // endpoints of first subarray
int first2 = mid+1, last2 = last; // endpoints of second subarray
int index = first1; // next index open in temp array
// Copy smaller item from each subarray into temp until one
// of the subarrays is exhausted
while (first1 <= last1 && first2 <= last2)
{
if (data[first1].compareTo(data[first2]) < 0)
{
temp[index] = data[first1];
first1++;
}
else
{
temp[index] = data[first2];
first2++;
}
index++;
}
// Copy remaining elements from first subarray, if any
while (first1 <= last1)
{
temp[index] = data[first1];
first1++;
index++;
}
// Copy remaining elements from second subarray, if any
while (first2 <= last2)
{
temp[index] = data[first2];
first2++;
index++;
}
// Copy merged data into original array
for (index = first; index <= last; index++)
data[index] = temp[index];
}