Whctf 2017 -UNTITLED- Writeup
分析:
-
下載下來的附件是一個py腳本,如下
1 from Crypto.Util.number import getPrime,long_to_bytes,bytes_to_long 2 import primefac 3 import time 4 from os import urandom 5 import hashlib 6 import sys 7 class Unbuffered(object): 8 def __init__(self, stream): 9 self.stream = stream 10 def write(self, data): 11 self.stream.write(data) 12 self.stream.flush() 13 def __getattr__(self, attr): 14 return getattr(self.stream, attr) 15 import sys 16 sys.stdout = Unbuffered(sys.stdout) 17 def gen_args(): 18 p=getPrime(1024) 19 q=getPrime(1024) 20 n=p*q 21 e=0x10001 22 d=primefac.modinv(e,(p-1)*(q-1))%((p-1)*(q-1)) 23 return (p,q,e,n,d) 24 def proof(): 25 salt=urandom(4) 26 print salt.encode("base64"), 27 proof=raw_input("show me your work: ") 28 if hashlib.md5(salt+proof.decode("base64")).hexdigest().startswith("0000"): 29 print "checked success" 30 return 1 31 return 0 32 33 def run(): 34 if not proof(): 35 return 36 m=int(open("/home/bibi/PycharmProjects/work/whctf/flag","r").read().encode("hex"),16)#flag{*} 37 (p,q,e,n,d)=gen_args() 38 c=pow(m,e,n) 39 print "n:",hex(n) 40 print "e:",hex(e) 41 print "c:",hex(c) 42 t=int(hex(m)[2:][0:8],16) 43 u=pow(t,e,n) 44 print "u:",hex(u) 45 print "====" 46 x=int(hex(m)[2:][0:8]+raw_input("x: "),16) 47 print "====" 48 y=int(raw_input("y: "),16) 49 if (pow(x,e,n)==y and pow(y,d,n)==t): 50 print "s:",hex(int(bin(p)[2:][0:568],2)) 51 run()
-
nc連上之后如下:
-
結合py代碼分析,首先要通過proof()函數的驗證,即要滿足:
hashlib.md5(salt+proof.decode("base64")).hexdigest().startswith("0000")
寫一個腳本爆破,使鹽值和輸入內容的base64解碼的md5開頭四位為0000
#!/usr/bin/env python # -*- coding: utf-8 -*- __Auther__ = 'M4x' import hashlib import string #base64編碼后的范圍 dic = string.ascii_letters + string.digits + "+/" #鹽值 salt = '+/DlHw=='.decode('base64') #先嘗試爆破4位 for a in dic: for b in dic: for c in dic: for d in dic: proof = a + b + c + d try: if hashlib.md5(salt + proof.decode("base64")).hexdigest().startswith("0000"): print proof exit(0) except: pass
很快就爆破出多組結果
隨便找一組提交,通過了proof函數的驗證,得到了n, e, c, u
-
再分析題目給的py腳本,可以看出
-
c即為flag經過RSA加密的密文,其中n和e已知
-
u為m的前8位(根據flag形式,即為f)經過RSA加密后的值
-
x=int(hex(m)[2:][0:8]+raw_input("x: "),16) y=int(raw_input("y: "),16) pow(x,e,n)==y and pow(y,d,n)==t
以上三行連起來分析,很容易得出當我們輸入的x為空,y為u時,即可通過最后一步if的驗證,從而得到p的前568位(輸入y時記得去掉最后的L)
-
-
至此整理一下我們得到的信息:
- flag加密后的密文c
- 加密所用到的n和e
- p的前568位
很容易聯想到恢復p,從而算出q,再解RSA就能拿到flag
步驟:
-
這個時候想到了國賽的一道類似題目Partial,也是知道n,e和高位p,需要恢復p,因此也選用相同的方法Coppersmith Attack(https://github.com/Gao-Chuan/RSA-and-LLL-attacks#factoring-with-high-bits-known),但Coppersmith Attack方法需要我們最少知道576位p,已知568位,差了兩個16進制數,根據官方給的hint
很明顯我們需要爆破出要補上的兩位
-
在強大的sagemath上寫了一個爆破的代碼,在線運行(http://sagecell.sagemath.org/)
1 n = 0x621725fc8ce7ce38c3ff9da9e7d4a9d8764eac78985f5abcf52bbad15f172d76c0d9cc4b08b1bbcd36590bc0050ab492f7df58404c0bca8b178e7e0f07c0c08e46ae63d8248b1f1cdd3f6cfed6fcc348b62e1cb7b269fc800c77d303ae154e1ade78a7492158c80818b8b180699e709764d31e08544e9c6dd75788d468ce1288927d5cea4336d6a76a9998731e15285c4695550c4db7210d09168903774ccee5dda6f8d3a502f8eac38a97c0cd84b3c3be87751dfc9f3bbcdec881d20fc7cb0086f71a0146b2e11e688372f809e401b9f19c003f75920df962631127dbda84cc781870b7895382c02d726eabc8373e73aec38f0a1dad4b8d0060c47511ef75d3 2 p = 0xb447abcd768378f05675b98f4724e934b1a7251749b14b11d3af19d3a47e98dbf90b94a77a01ab76e6a7f99d5b79cfce8e9edfcc7b626ed0f1699d743fa78bd73ff4a03f904bde 3 4 import string 5 dic = string.digits + "abcdef" 6 7 for a in dic: 8 for b in dic: 9 pp = hex(p) + a + b 10 #p需要用0補全到1024位 11 pp += '0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000' 12 #要加的數字與補全p時0的個數有關 13 pp = int(pp, 16) 14 p_fake = pp+0x10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 15 pbits = 1024 16 kbits = pbits-576 17 pbar = p_fake & (2^pbits-2^kbits) 18 print "upper %d bits (of %d bits) is given" % (pbits-kbits, pbits) 19 PR.<x> = PolynomialRing(Zmod(n)) 20 f = x + pbar 21 try: 22 x0 = f.small_roots(X=2^kbits, beta=0.4)[0] # find root < 2^kbits with factor >= n^0.4 23 print x0 + pbar 24 except: 25 pass
爆破出了p如下:
-
現在知道了n, e, c, p,解開RSA就可以了,python腳本如下(當然把解RSA的過程寫在sage代碼中也是可以的)
1 #!/usr/bin/env python 2 # -*- coding: utf-8 -*- 3 __Auther__ = 'M4x' 4 5 p = 126596896828983947657897211653294325357694173315986362964483543178327683872006349352506228192861938882562062524573153829867465009733178457399135420215887364009777012624212242069216745138202953735034716032666189414323613790242613717531697843979604409625853777348356827810939640137432278820298916431800157020739 6 n = 0x621725fc8ce7ce38c3ff9da9e7d4a9d8764eac78985f5abcf52bbad15f172d76c0d9cc4b08b1bbcd36590bc0050ab492f7df58404c0bca8b178e7e0f07c0c08e46ae63d8248b1f1cdd3f6cfed6fcc348b62e1cb7b269fc800c77d303ae154e1ade78a7492158c80818b8b180699e709764d31e08544e9c6dd75788d468ce1288927d5cea4336d6a76a9998731e15285c4695550c4db7210d09168903774ccee5dda6f8d3a502f8eac38a97c0cd84b3c3be87751dfc9f3bbcdec881d20fc7cb0086f71a0146b2e11e688372f809e401b9f19c003f75920df962631127dbda84cc781870b7895382c02d726eabc8373e73aec38f0a1dad4b8d0060c47511ef75d3L 7 e = 0x10001 8 c = 0x207b6655efcca22c8fff836c81c7400d23df0d6121d9f3ed349c8ca00acd9b3464ae17cdcfc1f64bab3f73ce10596527f20f60823e227edd12cbef4667bd8a7fd3318dfb78ad51de45228aa5e2db0ecf57eb8b839c643760abf760e223cc25fa1a55320ddd5c9407a6d1edc562f62176535f8ce619e2b9b33ee1b49bae1a398e9c02f947ad2c6d48a9a4a81f9bb518280ad298b8bf7e68a6580f6f66e14445a637429805b09926bb6d17581dcf9857828423e3b1dfe6f00450f1da63b9bb709e456569e3f08879393de2544ff883aa7743adb669f5dccf9059ca494692d4addd2c7619db0b07e08d6a3d6bf18897da74653cbbd0e84012f15a6c7b675a2d07f4L 9 10 import libnum 11 import gmpy2 12 13 q = n / p 14 assert n == p * q 15 16 d = gmpy2.invert(e, (p - 1) * (q - 1)) 17 m = pow(c, d, n) 18 print libnum.n2s(m)
python 解RSA的姿勢(http://www.cnblogs.com/WangAoBo/p/7513811.html)
運行,即可得到flag