現在作為一個開發人員,http server相關的內容已經是無論如何都要了解的知識了。用curl發一個請求,配置一下apache,部署一個web server對我們來說都不是很難,但要想搞清楚這些背后都發生了什么技術細節還真不是很簡單的。所以新的系列將是分享我學習Http Server的過程。
NanoHttpd是Github上的一個開源項目,號稱只用一個java文件就能創建一個http server,我將通過分析NanoHttpd的源碼解析如何開發自己的HttpServer。Github 地址:https://github.com/NanoHttpd/nanohttpd
在開始前首先簡單說明HttpServer的基本要素:
1.能接受HttpRequest並返回HttpResponse
2.滿足一個Server的基本特征,能夠長時間運行
關於Http協議一般HttpServer都會聲明支持Http協議的哪些特性,nanohttpd作為一個輕量級的httpserver只實現了最簡單、最常用的功能,不過我們依然可以從中學習很多。
首先看下NanoHttpd類的start函數
- public void start() throws IOException {
- myServerSocket = new ServerSocket();
- myServerSocket.bind((hostname != null) ? new InetSocketAddress(hostname, myPort) : new InetSocketAddress(myPort));
- myThread = new Thread(new Runnable() {
- @Override
- public void run() {
- do {
- try {
- final Socket finalAccept = myServerSocket.accept();
- registerConnection(finalAccept);
- finalAccept.setSoTimeout(SOCKET_READ_TIMEOUT);
- final InputStream inputStream = finalAccept.getInputStream();
- asyncRunner.exec(new Runnable() {
- @Override
- public void run() {
- OutputStream outputStream = null;
- try {
- outputStream = finalAccept.getOutputStream();
- TempFileManager tempFileManager = tempFileManagerFactory.create();
- HTTPSession session = new HTTPSession(tempFileManager, inputStream, outputStream, finalAccept.getInetAddress());
- while (!finalAccept.isClosed()) {
- session.execute();
- }
- } catch (Exception e) {
- // When the socket is closed by the client, we throw our own SocketException
- // to break the "keep alive" loop above.
- if (!(e instanceof SocketException && "NanoHttpd Shutdown".equals(e.getMessage()))) {
- e.printStackTrace();
- }
- } finally {
- safeClose(outputStream);
- safeClose(inputStream);
- safeClose(finalAccept);
- unRegisterConnection(finalAccept);
- }
- }
- });
- } catch (IOException e) {
- }
- } while (!myServerSocket.isClosed());
- }
- });
- myThread.setDaemon(true);
- myThread.setName("NanoHttpd Main Listener");
- myThread.start();
- }
1.創建ServerSocket,bind制定端口
2.創建主線程,主線程負責和client建立連接
3.建立連接后會生成一個runnable對象放入asyncRunner中,asyncRunner.exec會創建一個線程來處理新生成的連接。
4.新線程首先創建了一個HttpSession,然后while(true)的執行httpSession.exec。
這里介紹下HttpSession的概念,HttpSession是java里Session概念的實現,簡單來說一個Session就是一次httpClient->httpServer的連接,當連接close后session就結束了,如果沒結束則session會一直存在。這點從這里的代碼也能看到:如果socket不close或者exec沒有拋出異常(異常有可能是client段斷開連接)session會一直執行exec方法。
一個HttpSession中存儲了一次網絡連接中server應該保存的信息,比如:URI,METHOD,PARAMS,HEADERS,COOKIES等。
5.這里accept一個client的socket就創建一個獨立線程的server模型是ThreadServer模型,特點是一個connection就會創建一個thread,是比較簡單、常見的socket server實現。缺點是在同時處理大量連接時線程切換需要消耗大量的資源,如果有興趣可以了解更加高效的NIO實現方式。
當獲得client的socket后自然要開始處理client發送的httprequest。
Http Request Header的parse:
- // Read the first 8192 bytes.
- // The full header should fit in here.
- // Apache's default header limit is 8KB.
- // Do NOT assume that a single read will get the entire header at once!
- byte[] buf = new byte[BUFSIZE];
- splitbyte = 0;
- rlen = 0;
- {
- int read = -1;
- try {
- read = inputStream.read(buf, 0, BUFSIZE);
- } catch (Exception e) {
- safeClose(inputStream);
- safeClose(outputStream);
- throw new SocketException("NanoHttpd Shutdown");
- }
- if (read == -1) {
- // socket was been closed
- safeClose(inputStream);
- safeClose(outputStream);
- throw new SocketException("NanoHttpd Shutdown");
- }
- while (read > 0) {
- rlen += read;
- splitbyte = findHeaderEnd(buf, rlen);
- if (splitbyte > 0)
- break;
- read = inputStream.read(buf, rlen, BUFSIZE - rlen);
- }
- }
1.讀取socket數據流的前8192個字節,因為http協議中頭部最長為8192
2.通過findHeaderEnd函數找到header數據的截止位置,並把位置保存到splitbyte內。
- if (splitbyte < rlen) {
- inputStream.unread(buf, splitbyte, rlen - splitbyte);
- }
- parms = new HashMap<String, String>();
- if(null == headers) {
- headers = new HashMap<String, String>();
- }
- // Create a BufferedReader for parsing the header.
- BufferedReader hin = new BufferedReader(new InputStreamReader(new ByteArrayInputStream(buf, 0, rlen)));
- // Decode the header into parms and header java properties
- Map<String, String> pre = new HashMap<String, String>();
- decodeHeader(hin, pre, parms, headers);
1.使用unread函數將之前讀出來的body pushback回去,這里使用了pushbackstream,用法比較巧妙,因為一旦讀到了header的尾部就需要進入下面的邏輯來判斷是否需要再讀下去了,而不應該一直讀,讀到沒有數據為止
2.decodeHeader,將byte的header轉換為java對象
- private int findHeaderEnd(final byte[] buf, int rlen) {
- int splitbyte = 0;
- while (splitbyte + 3 < rlen) {
- if (buf[splitbyte] == '\r' && buf[splitbyte + 1] == '\n' && buf[splitbyte + 2] == '\r' && buf[splitbyte + 3] == '\n') {
- return splitbyte + 4;
- }
- splitbyte++;
- }
- return 0;
- }
1.http協議規定header和body之間使用兩個回車換行分割
- private void decodeHeader(BufferedReader in, Map<String, String> pre, Map<String, String> parms, Map<String, String> headers)
- throws ResponseException {
- try {
- // Read the request line
- String inLine = in.readLine();
- if (inLine == null) {
- return;
- }
- StringTokenizer st = new StringTokenizer(inLine);
- if (!st.hasMoreTokens()) {
- throw new ResponseException(Response.Status.BAD_REQUEST, "BAD REQUEST: Syntax error. Usage: GET /example/file.html");
- }
- pre.put("method", st.nextToken());
- if (!st.hasMoreTokens()) {
- throw new ResponseException(Response.Status.BAD_REQUEST, "BAD REQUEST: Missing URI. Usage: GET /example/file.html");
- }
- String uri = st.nextToken();
- // Decode parameters from the URI
- int qmi = uri.indexOf('?');
- if (qmi >= 0) {
- decodeParms(uri.substring(qmi + 1), parms);
- uri = decodePercent(uri.substring(0, qmi));
- } else {
- uri = decodePercent(uri);
- }
- // If there's another token, it's protocol version,
- // followed by HTTP headers. Ignore version but parse headers.
- // NOTE: this now forces header names lowercase since they are
- // case insensitive and vary by client.
- if (st.hasMoreTokens()) {
- String line = in.readLine();
- while (line != null && line.trim().length() > 0) {
- int p = line.indexOf(':');
- if (p >= 0)
- headers.put(line.substring(0, p).trim().toLowerCase(Locale.US), line.substring(p + 1).trim());
- line = in.readLine();
- }
- }
- pre.put("uri", uri);
- } catch (IOException ioe) {
- throw new ResponseException(Response.Status.INTERNAL_ERROR, "SERVER INTERNAL ERROR: IOException: " + ioe.getMessage(), ioe);
- }
- }
1.Http協議第一行是Method URI HTTP_VERSION
2.后面每行都是KEY:VALUE格式的header
3.uri需要經過URIDecode處理后才能使用
4.uri中如果包含?則表示有param,httprequest的param一般表現為:/index.jsp?username=xiaoming&id=2
下面是處理cookie,不過這里cookie的實現較為簡單,所以跳過。之后是serve方法,serve方法提供了用戶自己實現httpserver具體邏輯的很好接口。在NanoHttpd中的serve方法實現了一個默認的簡單處理功能。
- /**
- * Override this to customize the server.
- * <p/>
- * <p/>
- * (By default, this delegates to serveFile() and allows directory listing.)
- *
- * @param session The HTTP session
- * @return HTTP response, see class Response for details
- */
- public Response serve(IHTTPSession session) {
- Map<String, String> files = new HashMap<String, String>();
- Method method = session.getMethod();
- if (Method.PUT.equals(method) || Method.POST.equals(method)) {
- try {
- session.parseBody(files);
- } catch (IOException ioe) {
- return new Response(Response.Status.INTERNAL_ERROR, MIME_PLAINTEXT, "SERVER INTERNAL ERROR: IOException: " + ioe.getMessage());
- } catch (ResponseException re) {
- return new Response(re.getStatus(), MIME_PLAINTEXT, re.getMessage());
- }
- }
- Map<String, String> parms = session.getParms();
- parms.put(QUERY_STRING_PARAMETER, session.getQueryParameterString());
- return serve(session.getUri(), method, session.getHeaders(), parms, files);
- }
這個默認的方法處理了PUT和POST方法,如果不是就返回默認的返回值。
parseBody方法中使用了tmpFile的方法保存httpRequest的content信息,然后處理,具體邏輯就不細說了,不是一個典型的實現。
最后看一下發response的邏輯:
- /**
- * Sends given response to the socket.
- */
- protected void send(OutputStream outputStream) {
- String mime = mimeType;
- SimpleDateFormat gmtFrmt = new SimpleDateFormat("E, d MMM yyyy HH:mm:ss 'GMT'", Locale.US);
- gmtFrmt.setTimeZone(TimeZone.getTimeZone("GMT"));
- try {
- if (status == null) {
- throw new Error("sendResponse(): Status can't be null.");
- }
- PrintWriter pw = new PrintWriter(outputStream);
- pw.print("HTTP/1.1 " + status.getDescription() + " \r\n");
- if (mime != null) {
- pw.print("Content-Type: " + mime + "\r\n");
- }
- if (header == null || header.get("Date") == null) {
- pw.print("Date: " + gmtFrmt.format(new Date()) + "\r\n");
- }
- if (header != null) {
- for (String key : header.keySet()) {
- String value = header.get(key);
- pw.print(key + ": " + value + "\r\n");
- }
- }
- sendConnectionHeaderIfNotAlreadyPresent(pw, header);
- if (requestMethod != Method.HEAD && chunkedTransfer) {
- sendAsChunked(outputStream, pw);
- } else {
- int pending = data != null ? data.available() : 0;
- sendContentLengthHeaderIfNotAlreadyPresent(pw, header, pending);
- pw.print("\r\n");
- pw.flush();
- sendAsFixedLength(outputStream, pending);
- }
- outputStream.flush();
- safeClose(data);
- } catch (IOException ioe) {
- // Couldn't write? No can do.
- }
- }
發送response的步驟如下:
1.設置mimeType和Time等內容。
2.創建一個PrintWriter,按照HTTP協議依次開始寫入內容
3.第一行是HTTP的返回碼
4.然后是content-Type
5.然后是Date時間
6.之后是其他的HTTP Header
7.設置Keep-Alive的Header,Keep-Alive是Http1.1的新特性,作用是讓客戶端和服務器端之間保持一個長鏈接。
8.如果客戶端指定了ChunkedEncoding則分塊發送response,Chunked Encoding是Http1.1的又一新特性。一般在response的body比較大的時候使用,server端會首先發送response的HEADER,然后分塊發送response的body,每個分塊都由chunk length\r\n和chunk data\r\n組成,最后由一個0\r\n結束。
- private void sendAsChunked(OutputStream outputStream, PrintWriter pw) throws IOException {
- pw.print("Transfer-Encoding: chunked\r\n");
- pw.print("\r\n");
- pw.flush();
- int BUFFER_SIZE = 16 * 1024;
- byte[] CRLF = "\r\n".getBytes();
- byte[] buff = new byte[BUFFER_SIZE];
- int read;
- while ((read = data.read(buff)) > 0) {
- outputStream.write(String.format("%x\r\n", read).getBytes());
- outputStream.write(buff, 0, read);
- outputStream.write(CRLF);
- }
- outputStream.write(String.format("0\r\n\r\n").getBytes());
- }
9.如果沒指定ChunkedEncoding則需要指定Content-Length來讓客戶端指定response的body的size,然后再一直寫body直到寫完為止。
- private void sendAsFixedLength(OutputStream outputStream, int pending) throws IOException {
- if (requestMethod != Method.HEAD && data != null) {
- int BUFFER_SIZE = 16 * 1024;
- byte[] buff = new byte[BUFFER_SIZE];
- while (pending > 0) {
- int read = data.read(buff, 0, ((pending > BUFFER_SIZE) ? BUFFER_SIZE : pending));
- if (read <= 0) {
- break;
- }
- outputStream.write(buff, 0, read);
- pending -= read;
- }
- }
- }
最后總結下實現HttpServer最重要的幾個部分:
1.能夠accept tcp連接並從socket中讀取request數據
2.把request的比特流轉換成request對象中的對象數據
3.根據http協議的規范處理http request
4.產生http response再寫回到socket中傳給client。