今天晚上突然腦子不知怎么的,本來正在人工給12306驗證碼做打標工作,突然想看看雙色球每期的開獎結果是否有規律
從這里下載從03年到今年的每期雙色球開獎結果
用t-SNE降維到3維打印出來看看
似乎並沒有什么規律
准備用線性回歸來擬合一個模型,馬上就有一個問題,對於雙色球預測,自變量取什么?這是個非常復雜的問題了,而且可能是無解的問題,因為如果雙色球是完全的獨立隨機事件,那也就無法提取出自變量,自然也就沒法提取特征空間,這里姑且用開獎期號作為自變量特征,用結果(6維的紅球結果,1維的藍球結果)作為label
# -*- coding: utf-8 -*- import os import numpy as np import matplotlib.pyplot as plt import pickle from sklearn.manifold import TSNE from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model from sklearn.metrics import mean_squared_error, r2_score def load_historydata(): if not os.path.isfile("ssq.pkl"): ori_data = np.loadtxt('ssq.TXT', delimiter=' ', usecols=(0, 2, 3, 4, 5, 6, 7, 8), unpack=False) pickle.dump(ori_data, open("ssq.pkl", "w")) return ori_data else: ori_data = pickle.load(open("ssq.pkl", "r")) return ori_data def load_tsnedata(ori_data): if not os.path.isfile("ssq_tsne.pkl"): tsne = TSNE(n_components=3, random_state=0) tsne_data = tsne.fit_transform(ori_data) pickle.dump(tsne_data, open("ssq_tsne.pkl", "w")) return tsne_data else: tsne_data = pickle.load(open("ssq_tsne.pkl", "r")) return tsne_data def show_oridata(show_date): fig = plt.figure(1, figsize=(8, 6)) ax = Axes3D(fig, elev=-150, azim=110) ax.scatter(show_date[:, 0], show_date[:, 1], show_date[:, 2], edgecolor='k', s=40) plt.show() if __name__ == '__main__': ori_data = load_historydata() np.random.shuffle(ori_data) # tsne_data = load_tsnedata(ori_data) # show_oridata(tsne_data) X_data = ori_data[:, 0].reshape(-1, 1) Y_data = ori_data[:, 1:] print "X_data[0]: ", X_data[0] print "Y_data[0]: ", Y_data[0] # Split the data into training/testing sets split_len = int(len(X_data) * 0.8) X_train = X_data[:split_len] X_test = X_data[split_len:] print "X_train" print X_train # Split the targets into training/testing sets y_train = Y_data[:split_len] y_test = Y_data[split_len:] print "y_train" print y_train # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(X_train, y_train) # Make predictions using the testing set #y_pred = regr.predict(X_train).round() y_pred = regr.predict(X_test).round() print "y_pred" print y_pred print "y_pred distinct" y_pred_cache = list() for line in y_pred: line = list(line) if line not in y_pred_cache: y_pred_cache.append(line) for line in y_pred_cache: print line # 預測的准確度 print "Prediction accurate: {0}%".format(np.mean(X_test == y_pred) * 100)
線性回歸的預測結果如下
y_pred distinct [5.0, 9.0, 14.0, 19.0, 24.0, 29.0, 9.0] [5.0, 10.0, 15.0, 19.0, 24.0, 29.0, 9.0] [5.0, 10.0, 14.0, 19.0, 24.0, 29.0, 9.0]
模型對所有的training set的每一條預測結果都相同,這說明,對於開獎期號來說,開獎結果是一個完全隨機的事件
如果考慮每期和每期之間可能有關聯性,可以考慮試試用RNN來訓練,輸入依然是開獎期號
但是反過來也給了我一個啟示,在進行機器學習項目的時候,如果train或者test的結果不好或者不符合預期,不要急於去調參數或者換模型,更應該回過頭來想想自己給模型輸入的特征是否確實隱含了規律,算法是無法對隨機事件進行預測的,只有原始數據中確實隱含了規律,使用適當的模型才能從中抽象出模型,特征工程是非常關鍵的,也是需要長久思考的
Relevant Link:
https://datachart.500.com/ssq/history/history.shtml http://blog.csdn.net/supperman_009/article/details/40623503 https://zhuanlan.zhihu.com/p/26341086 http://ssq.50018.com/zou-shi-tu/default.aspx http://www.sohu.com/a/134552307_116235