Elasticsearch 5.x 關於term query和match query的認識


 
         
http://blog.csdn.net/yangwenbo214/article/details/54142786
 
         

 

一、基本情況

前言:term query和match query牽扯的東西比較多,例如分詞器、mapping、倒排索引等。我結合官方文檔中的一個實例,談談自己對此處的理解

string類型在es5.*分為text和keyword。text是要被分詞的,整個字符串根據一定規則分解成一個個小寫的term,keyword類似es2.3中not_analyzed的情況。
string數據put到elasticsearch中,默認是text。

NOTE:默認分詞器為standard analyzer。”Quick Brown Fox!”會被分解成[quick,brown,fox]寫入倒排索引

term query會去倒排索引中尋找確切的term,它並不知道分詞器的存在。這種查詢適合keyword 、numeric、date
match query知道分詞器的存在。並且理解是如何被分詞的
總的來說有如下: 
- term query 查詢的是倒排索引中確切的term 
- match query 會對filed進行分詞操作,然后在查詢

二、測試(1)

准備數據:
POST /termtest/termtype/1
{
  "content":"Name"
}


POST /termtest/termtype/2
{
  "content":"name city"
}

查看數據是否導入
GET /termtest/_search
{
  "query":
  {
    "match_all": {}
  }
}


結果:
{
  "took": 1,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 1,
    "hits": [
      {
        "_index": "termtest",
        "_type": "termtype",
        "_id": "2",
        "_score": 1,
        "_source": {
          "content": "name city"
        }
      },
      {
        "_index": "termtest",
        "_type": "termtype",
        "_id": "1",
        "_score": 1,
        "_source": {
          "content": "Name"
        }
      }
    ]
  }
}


如上說明,數據已經被導入。該處字符串類型是text,也就是默認被分詞了

做如下查詢:
POST /termtest/_search
{
  "query":{
    "term":{
      "content":"Name"
    }
  }
}




結果
{
  "took": 1,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 0,
    "max_score": null,
    "hits": []
  }
}




分析結果:因為是默認被standard analyzer分詞器分詞,大寫字母全部轉為了小寫字母,並存入了倒排索引以供搜索。term是確切查詢, 
必須要匹配到大寫的Name。所以返回結果為空

POST /termtest/_search
{
  "query":{
    "match":{
      "content":"Name"
    }
  }
}


結果
{
  "took": 2,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 0.2876821,
    "hits": [
      {
        "_index": "termtest",
        "_type": "termtype",
        "_id": "1",
        "_score": 0.2876821,
        "_source": {
          "content": "Name"
        }
      },
      {
        "_index": "termtest",
        "_type": "termtype",
        "_id": "2",
        "_score": 0.25811607,
        "_source": {
          "content": "name city"
        }
      }
    ]
  }
}


分析結果: 原因(
1):默認被standard analyzer分詞器分詞,大寫字母全部轉為了小寫字母,並存入了倒排索引以供搜索, 原因(2):match query先對filed進行分詞,分詞為”name”,再去匹配倒排索引中的term 三、測試(2) 下面是官網實例官網實例 1. 導入數據 PUT my_index { "mappings": { "my_type": { "properties": { "full_text": { "type": "text" }, "exact_value": { "type": "keyword" } } } } } PUT my_index/my_type/1 { "full_text": "Quick Foxes!", "exact_value": "Quick Foxes!" }
先指定類型,再導入數據 full_text: 指定類型為text,是會被分詞 exact_value: 指定類型為keyword,不會被分詞 full_text: 會被standard analyzer分詞為如下terms [quick,foxes],存入倒排索引 exact_value: 只有[Quick Foxes!]這一個term會被存入倒排索引 做如下查詢 GET my_index
/my_type/_search { "query": { "term": { "exact_value": "Quick Foxes!" } } } 結果: { "took": 1, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 1, "max_score": 0.2876821, "hits": [ { "_index": "my_index", "_type": "my_type", "_id": "1", "_score": 0.2876821, "_source": { "full_text": "Quick Foxes!", "exact_value": "Quick Foxes!" } } ] } } exact_value包含了確切的Quick Foxes!,因此被查詢到 GET my_index/my_type/_search { "query": { "term": { "full_text": "Quick Foxes!" } } } 結果: { "took": 4, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 0, "max_score": null, "hits": [] } } full_text被分詞了,倒排索引中只有quick和foxes。沒有Quick Foxes! GET my_index/my_type/_search { "query": { "term": { "full_text": "foxes" } } } 結果: { "took": 2, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 1, "max_score": 0.25811607, "hits": [ { "_index": "my_index", "_type": "my_type", "_id": "1", "_score": 0.25811607, "_source": { "full_text": "Quick Foxes!", "exact_value": "Quick Foxes!" } } ] } } full_text被分詞,倒排索引中只有quick和foxes,因此查詢foxes能成功 GET my_index/my_type/_search { "query": { "match": { "full_text": "Quick Foxes!" } } } 結果: { "took": 3, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 1, "max_score": 0.51623213, "hits": [ { "_index": "my_index", "_type": "my_type", "_id": "1", "_score": 0.51623213, "_source": { "full_text": "Quick Foxes!", "exact_value": "Quick Foxes!" } } ] } } match query會先對自己的query string進行分詞。也就是”Quick Foxes!”先分詞為quick和foxes。然后在去倒排索引中查詢,此處full_text是text類型,被分詞為quick和foxes 因此能匹配上。
參考文獻:http://blog.csdn.net/yangwenbo214/article/details/54142786


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM