MapReduce編程(一) Intellij Idea配置MapReduce編程環境


介紹怎樣在Intellij Idea中通過創建mavenproject配置MapReduce的編程環境。

一、軟件環境

我使用的軟件版本號例如以下:

  1. Intellij Idea 2017.1
  2. Maven 3.3.9
  3. Hadoop偽分布式環境( 安裝教程可參考這里)

二、創建mavenproject

打開Idea,file->new->Project,左側面板選擇mavenproject。(假設僅僅跑MapReduce創建javaproject就可以,不用勾選Creat from archetype,假設想創建webproject或者使用骨架能夠勾選)
這里寫圖片描寫敘述
設置GroupId和ArtifactId。下一步。


這里寫圖片描寫敘述
設置project存儲路徑。下一步。
這里寫圖片描寫敘述
Finish之后,空白project的路徑例如以下圖所看到的。

這里寫圖片描寫敘述

完整的project路徑例如以下圖所看到的:
這里寫圖片描寫敘述

三、加入maven依賴

在pom.xml加入依賴。對於hadoop 2.7.3版本號的hadoop,須要的jar包有下面幾個:

  • hadoop-common
  • hadoop-hdfs
  • hadoop-mapreduce-client-core
  • hadoop-mapreduce-client-jobclient
  • log4j( 打印日志)

    pom.xml中的依賴例如以下:

    <dependencies>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
            <scope>test</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>2.7.3</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>2.7.3</version>
        </dependency>


        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-core</artifactId>
            <version>2.7.3</version>
        </dependency>

        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-jobclient</artifactId>
            <version>2.7.3</version>
        </dependency>

        <dependency>
            <groupId>log4j</groupId>
            <artifactId>log4j</artifactId>
            <version>1.2.17</version>
        </dependency>
    </dependencies>

四、配置log4j

src/main/resources目錄下新增log4j的配置文件log4j.properties。內容例如以下:

log4j.rootLogger = debug,stdout

### 輸出信息到控制抬 ###
log4j.appender.stdout = org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target = System.out
log4j.appender.stdout.layout = org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern = [%-5p] %d{yyyy-MM-dd HH:mm:ss,SSS} method:%l%n%m%n

五、啟動Hadoop

啟動Hadoop,執行命令:

cd hadoop-2.7.3/
./sbin/start-all.sh

訪問http://localhost:50070/查看hadoop是否正常啟動。

六、執行WordCount(從本地讀取文件)

在project根目錄下新建input目錄,input目錄下新增dream.txt,隨便寫入一些單詞:

I have a  dream
a dream

在src/main/java目錄下新建包。新增FileUtil.java,創建一個刪除output文件的函數,以后就不用手動刪除了。內容例如以下:

package com.mrtest.hadoop;

import java.io.File;

/** * Created by bee on 3/25/17. */
public class FileUtil {

    public static boolean deleteDir(String path) {
        File dir = new File(path);
        if (dir.exists()) {
            for (File f : dir.listFiles()) {
                if (f.isDirectory()) {
                    deleteDir(f.getName());
                } else {
                    f.delete();
                }
            }
            dir.delete();
            return true;
        } else {
            System.out.println("文件(夾)不存在!");
            return false;
        }
    }

}

編寫WordCount的MapReduce程序WordCount.java,內容例如以下:

package com.mrtest.hadoop;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;

/** * Created by bee on 3/25/17. */
public class WordCount {


    public static class TokenizerMapper extends
            Mapper<Object, Text, Text, IntWritable> {


        public static final IntWritable one = new IntWritable(1);
        private Text word = new Text();

        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            StringTokenizer itr = new StringTokenizer(value.toString());
            while (itr.hasMoreTokens()) {
                this.word.set(itr.nextToken());
                context.write(this.word, one);
            }
        }

    }

    public static class IntSumReduce extends
            Reducer<Text, IntWritable, Text, IntWritable> {
        private IntWritable result = new IntWritable();

        public void reduce(Text key, Iterable<IntWritable> values,
                           Context context)
                throws IOException, InterruptedException {
            int sum = 0;
            IntWritable val;
            for (Iterator i = values.iterator(); i.hasNext(); sum += val.get()) {
                val = (IntWritable) i.next();
            }
            this.result.set(sum);
            context.write(key, this.result);
        }
    }

    public static void main(String[] args)
            throws IOException, ClassNotFoundException, InterruptedException {

        FileUtil.deleteDir("output");
        Configuration conf = new Configuration();

        String[] otherArgs = new String[]{"input/dream.txt","output"};
        if (otherArgs.length != 2) {
            System.err.println("Usage:Merge and duplicate removal <in> <out>");
            System.exit(2);
        }

        Job job = Job.getInstance(conf, "WordCount");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(WordCount.TokenizerMapper.class);
        job.setReducerClass(WordCount.IntSumReduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

執行完成以后。會在project根目錄下添加一個output目錄。打開output/part-r-00000,內容例如以下:

I   1
a   2
dream   2
have    1

這里在main函數中新增了一個String類型的數組,假設想用main函數的args數組接受參數。在執行時指定輸入和輸出路徑也是能夠的。執行WordCount之前,配置Configuration並指定Program arguments就可以。
這里寫圖片描寫敘述


七、執行WordCount(從HDFS讀取文件)

在HDFS上新建目錄:

hadoop fs -mkdir /worddir

假設出現Namenode安全模式導致的不能創建目錄提示:

mkdir: Cannot create directory /worddir. Name node is in safe mode.

執行下面命令關閉safe mode:

hadoop dfsadmin -safemode leave

上傳本地文件:

hadoop fs -put dream.txt /worddir

改動otherArgs參數,指定輸入為文件在HDFS上的路徑:

String[] otherArgs = new String[]{"hdfs://localhost:9000/worddir/dream.txt","output"};

八、代碼下載

代碼下載地址:http://download.csdn.net/detail/napoay/9799523


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM