描寫敘述
人臉識別包含四個步驟
- 人臉檢測:定位人臉區域,僅僅關心是不是臉;
- 人臉預處理:對人臉檢測出來的圖片進行調整優化。
- 收集和學習人臉:收集要識別的人的預處理過的人臉,然后通過一些算法去學習怎樣識別;
- 人臉識別:識別當前人臉與數據庫里的哪個人臉最類似。
人臉檢測
OpenCV集成了基於PCA LDA 和LBP的人臉檢測器。源文件自帶非常多各種訓練好的檢測器。下表是經常使用的XML文件
上面的XML文件能夠檢測正面人臉、眼睛或鼻子。檢測人臉我採用的是第一個或第二個Harr人臉檢測器。
識別率比較好。
第一步:載入Harr人臉檢測XML文件
try{
faceCascade.load(faceCascadeFilename);
}catch(cv::Exception& e){}
if ( faceCascade.empty() ) {
cerr << "ERROR: Could not load Face Detection cascade classifier [" << faceCascadeFilename << "]!" << endl;
cerr << "Copy the file from your OpenCV data folder (eg: 'C:\\OpenCV\\data\\haarcascade_frontalface_alt2') into this WebcamFaceRec folder." << endl;
exit(1);
}
cout << "Loaded the Face Detection cascade classifier [" << faceCascadeFilename << "]." << endl;
第二步:載入攝像頭,從視頻獲取圖像幀。
try{
videoCapture.open(CameraID);
}catch(cv::Exception& e){}
if(!videoCapture.isOpened()){
cerr << "ERROR: could not open Camera!" << endl;
exit(1);
}
videoCapture >> cameraFrame;
第三步:一幀圖像預處理
1、 灰度轉換:使用cvtColor()函數,將彩色圖像轉換為灰度圖像。台式機是3通道的BGR。移動設備則是4通道的BGRA格式
if(srcimg.channels() ==3 ){ cvtColor(srcimg,gray_img,CV_BGR2GRAY); }
else if(srcimg.channels() ==4 ){ cvtColor(srcimg,gray_img,CV_BGRA2GRAY); }
else { gray_img = srcimg; }
2、直方圖均衡化,在OpenCV函數中利用equalizeHist()函數運行直方圖均衡化,提升對照度和亮度。
equalizeHist(gray_img,equalized_Img);
第四步:檢測人臉
上面已經創建了級聯分類器並載入好XML文件。接着使用函數Classifier::detecMultiScale()函數來檢測人臉。這個函數的參數說明:
a、minFeatureSize: 該參數決定最小的人臉大小。通常能夠設為20*20或30*30像素。假設使用攝像機或移動設備檢測,則人臉一般非常接近攝像機,可把參數調大。80*80;
b、searchScaleFactor: 該參數決定有多少不同大小的人臉要搜索,通常設為1.1
c、minNeighbors: 該參數決定檢測器怎樣確定人臉已經被檢測到。通常設為3
d、flags: 該參數設定是否要查找全部的人臉或最大的人臉
(CASCADE_FIND_BIGGEST_OBJECT)
int flags = CASCADE_FIND_BIGGEST_OBJECT;
//smallest object Size
Size minFeatureSize = Size(20,20);
// How detailed should the search be. Must be larger than 1.0.
float searchScaleFactor = 1.1f;
// How much the detections should be filtered out. This should depend on how bad false detections are to your system.
// minNeighbors=2 means lots of good+bad detections, and minNeighbors=6 means only good detections are given but some are missed.
int minNeighbors = 6;
vector<Rect> faces;
faceCascade.detectMultiScale(dectImg,faces,searchScaleFactor,
minNeighbors,flags,minFeatureSize);
//faceCascade.detectMultiScale(equalized_Img, faces);
int i = 0;
for(i = 0; i < faces.size(); i++){
Rect face_id = faces[i];
rectangle(orginalimg,face_id,Scalar(0,255,0),1);
}
人臉識別
為了識別人臉。須要收集足夠多的要識別的人的人臉圖像。
收集好之后,選擇適合人臉識別的機器學習算法。通過算法來學習收集的數據。從而訓練出一個模型並保存。下次進來一幀圖像,通過算法對模型里的參數進行匹配識別。人臉識別機器學習算法有非常多,如SVM(支持向量機),ANN(人工神經網絡)還有最經常使用的是基於特征臉的算法。OpenCV提供了CV::Algorithm類,類中有基於特征臉的(PCA 主成分分析)、Fisher臉(LDA 線性判別分析)和LPBH(局部二值模式直方圖)
使用里面的算法,第一步必須通過cv::Algorithm::creat< FaceRecognizer>創建一個FaceRecognizer對象。創建了FaceRecognizer對象之后。將收集的人臉數據和標簽傳遞給FaceRecognizer::train() 函數就可以進行訓練模型。
string facerecAlgorithm = "FaceRecognizer.Fisherfaces";
Ptr<FaceRecognizer> model;
// Use OpenCV's new FaceRecognizer in the "contrib" module:
model = Algorithm::create<FaceRecognizer>(facerecAlgorithm);
if (model.empty()) {
cerr << "ERROR: The FaceRecognizer [" << facerecAlgorithm;
cerr << "] is not available in your version of OpenCV. ";
cerr << "Please update to OpenCV v2.4.1 or newer." << endl;
exit(1);
}
model->train(preprocessedFaces, faceLabels);
訓練好模型之后。通常是把模型保存下來,以免下次反復訓練。
直接載入模型就可以。下一步就是人臉識別。相同,opencv把識別算法集成在FaceRecognizer類中。簡單地調用FaceRecognizer::predict() 就能夠識別。
int identity = model->predict(preprocessedFace);
測試程序
/* * Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>. * Released to public domain under terms of the BSD Simplified license. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the organization nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * See <http://www.opensource.org/licenses/bsd-license> */
#include "opencv2/core/core.hpp"
#include "opencv2/contrib/contrib.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <fstream>
#include <sstream>
#include <direct.h>
using namespace cv;
using namespace std;
//const char *faceCascadeFilename = "C:\\opencv\\sources\\data\\lbpcascades\\lbpcascade_frontalface.xml";
const char *faceCascadeFilename = "C:\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt2.xml";
const char *eyeCascadeFilename1 = "C:\\opencv\\sources\\data\\haarcascades\\haarcascade_eye.xml"; // Basic eye detector for open eyes only.
const char *eyeCascadeFilename2 = "C:\\opencv\\sources\\data\\haarcascades\\haarcascade_eye_tree_eyeglasses.xml";
const char *face_lib = "face_train_img//";
const int DESIRED_CAMERA_WIDTH = 640;
const int DESIRED_CAMERA_HEIGHT = 480;
const int Width = 92;
const int Height = 112;
int gender_width;
int gender_height;
int im_width;
int im_height;
string g_listname_t[]=
{
"Jack",
"William",
"huang",
"Barton"
};
static Mat norm_0_255(InputArray _src) {
Mat src = _src.getMat();
// Create and return normalized image:
Mat dst;
switch(src.channels()) {
case 1:
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
break;
case 3:
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC3);
break;
default:
src.copyTo(dst);
break;
}
return dst;
}
static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
std::ifstream file(filename.c_str(), ifstream::in);
if (!file) {
string error_message = "No valid input file was given, please check the given filename.";
CV_Error(CV_StsBadArg, error_message);
}
string line, path, classlabel;
while (getline(file, line)) {
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if(!path.empty() && !classlabel.empty()) {
images.push_back(imread(path, 0));
labels.push_back(atoi(classlabel.c_str()));
}
}
}
static void InitVideoCapture(VideoCapture &videoCapture, int CameraID)
{
try{
videoCapture.open(CameraID);
}catch(cv::Exception& e){}
if(!videoCapture.isOpened()){
cerr << "ERROR: could not open Camera!" << endl;
exit(1);
}
videoCapture.set(CV_CAP_PROP_FRAME_WIDTH, DESIRED_CAMERA_WIDTH);
videoCapture.set(CV_CAP_PROP_FRAME_HEIGHT, DESIRED_CAMERA_HEIGHT);
cout << "CameraID is :" << CameraID << endl;
}
static void InitDetectors(CascadeClassifier &faceCascade, CascadeClassifier &eyeCascade1, CascadeClassifier &eyeCascade2)
{
try{
faceCascade.load(faceCascadeFilename);
}catch(cv::Exception& e){}
if ( faceCascade.empty() ) {
cerr << "ERROR: Could not load Face Detection cascade classifier [" << faceCascadeFilename << "]!" << endl;
cerr << "Copy the file from your OpenCV data folder (eg: 'C:\\OpenCV\\data\\haarcascade_frontalface_alt2') into this WebcamFaceRec folder." << endl;
exit(1);
}
cout << "Loaded the Face Detection cascade classifier [" << faceCascadeFilename << "]." << endl;
// Load the Eye Detection cascade classifier xml file.
try { // Surround the OpenCV call by a try/catch block so we can give a useful error message!
eyeCascade1.load(eyeCascadeFilename1);
} catch (cv::Exception& e) {}
if ( eyeCascade1.empty() ) {
cerr << "ERROR: Could not load 1st Eye Detection cascade classifier [" << eyeCascadeFilename1 << "]!" << endl;
cerr << "Copy the file from your OpenCV data folder (eg: 'C:\\OpenCV\\data\\haarcascades') into this WebcamFaceRec folder." << endl;
exit(1);
}
cout << "Loaded the 1st Eye Detection cascade classifier [" << eyeCascadeFilename1 << "]." << endl;
// Load the Eye Detection cascade classifier xml file.
try { // Surround the OpenCV call by a try/catch block so we can give a useful error message!
eyeCascade2.load(eyeCascadeFilename2);
} catch (cv::Exception& e) {}
if ( eyeCascade2.empty() ) {
cerr << "Could not load 2nd Eye Detection cascade classifier [" << eyeCascadeFilename2 << "]." << endl;
// Dont exit if the 2nd eye detector did not load, because we have the 1st eye detector at least.
//exit(1);
}
else
cout << "Loaded the 2nd Eye Detection cascade classifier [" << eyeCascadeFilename2 << "]." << endl;
}
void readDataTraining(Ptr<FaceRecognizer> &model,vector<Mat> &images,vector<int> &labels,string &filePath )
{
// These vectors hold the images and corresponding labels.
// Read in the data. This can fail if no valid
// input filename is given.
try {
read_csv(filePath, images, labels);
} catch (cv::Exception& e) {
cerr << "Error opening file \"" << filePath << "\". Reason: " << e.msg << endl;
// nothing more we can do
exit(1);
}
// Quit if there are not enough images for this demo.
if(images.size() <= 1) {
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
CV_Error(CV_StsError, error_message);
}
/* Mat testSample = images[images.size() - 1]; int testLabel = labels[labels.size() - 1]; images.pop_back(); labels.pop_back();*/
model->train(images, labels);
//int predictedLabel = model->predict(testSample);
//
// To get the confidence of a prediction call the model with:
//
// int predictedLabel = -1;
// double confidence = 0.0;
// model->predict(testSample, predictedLabel, confidence);
//
/*string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel); cout << result_message << endl;*/
}
void preprocessing(Mat &srcimg, Mat &dstimg)
{
Mat gray_img;
if(srcimg.channels() ==3 ){
cvtColor(srcimg,gray_img,CV_BGR2GRAY);
}
else if(srcimg.channels() ==4 ){
cvtColor(srcimg,gray_img,CV_BGRA2GRAY);
}
else {
gray_img = srcimg;
}
/*Mat equalized_Img; equalizeHist(gray_img,equalized_Img);*/
dstimg = gray_img;
}
void faceDectRecog(CascadeClassifier &faceCascade,Ptr<FaceRecognizer> &model,Ptr<FaceRecognizer> &gender_model,Ptr<FaceRecognizer> &fishermodel,Mat &orginalimg,Mat &dectImg)
{
static int num = 0;
int predictedLabel = 0;
int gender_predict = 0;
// Only search for just 1 object (the biggest in the image).
int flags = CASCADE_FIND_BIGGEST_OBJECT;
//smallest object Size
Size minFeatureSize = Size(20,20);
// How detailed should the search be. Must be larger than 1.0.
float searchScaleFactor = 1.1f;
// How much the detections should be filtered out. This should depend on how bad false detections are to your system.
// minNeighbors=2 means lots of good+bad detections, and minNeighbors=6 means only good detections are given but some are missed.
int minNeighbors = 8;
vector<Rect> faces;
faceCascade.detectMultiScale(dectImg,faces,searchScaleFactor,
minNeighbors,flags,minFeatureSize);
//faceCascade.detectMultiScale(equalized_Img, faces);
/* pca + Lda Mat eigenvalues = gender_model->getMat("eigenvalues");//提取model中的特征值,該特征值默認由大到小排列 Mat W = gender_model->getMat("eigenvectors");//提取model中的特征向量,特征向量的排列方式與特征值排列順序一一相應 int xth = 121;//打算保留前121個特征向量,代碼中沒有體現原因,但選擇121是經過斟酌的,首先,在我的實驗中,"前121個特征值之和/全部特征值總和>0.97";其次,121=11^2,能夠將結果表示成一個11*11的2維圖像方陣,交給fisherface去計算。 //vector<Mat> reduceDemensionimages;//降維后的圖像矩陣 Mat evs = Mat(W, Range::all(), Range(0, xth));//選擇前xth個特征向量,其余舍棄 Mat mean = gender_model->getMat("mean"); */
int i = 0;
for(i = 0; i < faces.size(); i++){
Rect face_id = faces[i];
Mat face = dectImg(face_id);
Mat face_resized;
Mat gender_resized;
cv::resize(face, face_resized, Size(im_width, im_height), 1.0, 1.0, INTER_CUBIC);
cv::resize(face, gender_resized, Size(gender_width, gender_height), 1.0, 1.0, INTER_CUBIC);
rectangle(orginalimg,face_id,Scalar(0,255,0),1);
predictedLabel = model->predict(face_resized);
string result_message;
/*result_message = format("Predicted = %d ", predictedLabel); cout << result_message << endl;*/
/* PCA +LDA Mat projection = subspaceProject(evs, mean, gender_resized.reshape(1,1));//做子空間投影 //reduceDemensionimages.push_back(projection.reshape(1,sqrt(xth*1.0))); Mat reduceDemensionimages = projection.reshape(1,sqrt(xth*1.0)); gender_predict = fishermodel->predict(reduceDemensionimages);*/
string box_text;
box_text = format( "Prediction = " );
if ( predictedLabel >= 0 && predictedLabel <=3 )
{
box_text.append( g_listname_t[predictedLabel] );
}
else box_text.append( "Unknown" );
gender_predict = gender_model->predict(face_resized);
if(gender_predict == 0)
{
result_message = format("Predicted: female");
box_text.append( " female" );
}
else if (gender_predict == 1)
{
result_message = format("Predicted: male");
box_text.append( " male" );
}
else result_message = format("Predicted: Unknow");
cout << result_message << endl;
// Calculate the position for annotated text (make sure we don't
// put illegal values in there):
int pos_x = std::max(face_id.tl().x - 10, 0);
int pos_y = std::max(face_id.tl().y - 10, 0);
// And now put it into the image:
putText(orginalimg, box_text, Point(pos_x, pos_y), FONT_HERSHEY_PLAIN, 1.0, CV_RGB(0,255,0), 2.0);
}
}
void faceDect(CascadeClassifier &faceCascade,Mat &orginalimg,Mat &dectImg)
{
// Only search for just 1 object (the biggest in the image).
int flags = CASCADE_FIND_BIGGEST_OBJECT;
//smallest object Size
Size minFeatureSize = Size(20,20);
// How detailed should the search be. Must be larger than 1.0.
float searchScaleFactor = 1.1f;
// How much the detections should be filtered out. This should depend on how bad false detections are to your system.
// minNeighbors=2 means lots of good+bad detections, and minNeighbors=6 means only good detections are given but some are missed.
int minNeighbors = 6;
vector<Rect> faces;
faceCascade.detectMultiScale(dectImg,faces,searchScaleFactor,
minNeighbors,flags,minFeatureSize);
//faceCascade.detectMultiScale(equalized_Img, faces);
int i = 0;
for(i = 0; i < faces.size(); i++){
Rect face_id = faces[i];
rectangle(orginalimg,face_id,Scalar(0,255,0),1);
}
}
void CaptureFace(CascadeClassifier &faceCascade,Ptr<FaceRecognizer> &model,Mat &orginalimg,Mat &dectImg)
{
static int num = 0;
// Only search for just 1 object (the biggest in the image).
int flags = CASCADE_FIND_BIGGEST_OBJECT;
//smallest object Size
Size minFeatureSize = Size(20,20);
// How detailed should the search be. Must be larger than 1.0.
float searchScaleFactor = 1.1f;
// How much the detections should be filtered out. This should depend on how bad false detections are to your system.
// minNeighbors=2 means lots of good+bad detections, and minNeighbors=6 means only good detections are given but some are missed.
int minNeighbors = 6;
vector<Rect> faces;
faceCascade.detectMultiScale(dectImg,faces,searchScaleFactor,
minNeighbors,flags,minFeatureSize);
//faceCascade.detectMultiScale(equalized_Img, faces);
int i = 0;
for(i = 0; i < faces.size(); i++){
Rect face_id = faces[i];
Mat face = dectImg(face_id);
Mat face_resized;
cv::resize(face, face_resized, Size(im_width, im_height), 1.0, 1.0, INTER_CUBIC);
char c[4];
itoa(num,c,10);
string s = face_lib + (string)c + ".png";
imwrite(s,face_resized);
cout << "Capture the" << num << "face" << endl;
cout << s << ";" << face_id << endl;
num ++;
rectangle(orginalimg,face_id,Scalar(0,255,0),1);
}
}
int main(int argc, const char *argv[])
{
int mode;
int i;
// Get the path to your CSV.
string fn_csv = string("at.txt");
string gender_csv = string("gender.txt");
string temp_csv = string("test.txt");
CascadeClassifier faceCascade;
CascadeClassifier eyeCascade1;
CascadeClassifier eyeCascade2;
VideoCapture videoCapture;
Ptr<FaceRecognizer> model;
Ptr<FaceRecognizer> temp_model;
Ptr<FaceRecognizer> gender_model;
int CameraID = 0;
vector<Mat> images;
vector<int> labels;
vector<Mat> temp_images;
vector<int> temp_labels;
vector<Mat> gender_images;
vector<int> gender_labels;
cout << "Compiled with OpenCV version " << CV_VERSION << endl << endl;
InitDetectors(faceCascade,eyeCascade1,eyeCascade2);
InitVideoCapture(videoCapture,CameraID);
printf("\n");
printf("FaceDec and Recognition V0.1\n");
printf("Usage: mode 0 : FaceDect; 1: train your own face; 2: Recognition \n");
printf("please input mode\n");
scanf("%d",&mode);
//model = createEigenFaceRecognizer();
temp_model = createEigenFaceRecognizer();
model =createEigenFaceRecognizer();
gender_model =createEigenFaceRecognizer();
Ptr<FaceRecognizer> fishermodel = createFisherFaceRecognizer();
//gender_model = createEigenFaceRecognizer();
if(mode == 3)
{
readDataTraining(model,images,labels,fn_csv);
readDataTraining(gender_model,gender_images,gender_labels,gender_csv);
gender_width = gender_images[0].cols;
gender_height = gender_images[0].rows;
im_width = images[0].cols;
im_height = images[0].rows;
model->save("Face_recog.yml");
gender_model->save("gender_recog.yml");
}
//readDataTraining(temp_model,temp_images,gender_labels,temp_csv);
model->load("Face_recog.yml");
gender_width = Width;
gender_height = Height;
im_width = Width;
im_height = Height;
gender_model->load("eigenface_gender.yml");//保存訓練結果,供檢測時使用
fishermodel->load("fisher.yml");
printf("gender_width :%d gender_height :%d im_width: %d im_height:%d\n",gender_width,gender_height,im_width,im_height);
int num = 0;
Mat cameraFrame;
if(mode == 4)
{
read_csv(temp_csv, temp_images, temp_labels);
for(i = 0; i < temp_images.size(); i ++)
{
Mat temp_img;
preprocessing(temp_images[i],temp_img);
CaptureFace(faceCascade,temp_model,temp_images[i],temp_img);
}
}
for(;;){
videoCapture >> cameraFrame;
if( cameraFrame.empty()){
cerr << "Error : could not grap next frame " << endl;
}
Mat processFrame = cameraFrame.clone();
Mat preprocess_img;
preprocessing(processFrame,preprocess_img);
switch(mode){
case 0:
faceDect(faceCascade,processFrame,preprocess_img);
break;
case 1:
CaptureFace(faceCascade,model,processFrame,preprocess_img);
case 2:
faceDectRecog(faceCascade,model,gender_model,fishermodel,processFrame,preprocess_img);
default:
break;
}
imshow("face_recognizer",processFrame);
char key = (char) waitKey(300);
if(key == 27)
break;
}
return 0;
}