Android:V4.2.2 Source Insight
寫在前面
在漫長的Android源代碼編譯等待過程中,想起之前寫過一部分的Android定位實現的探究小品,於是繼續探究。
注:代碼都是片段化的代碼,用來提綱挈領的說明問題。
定位的基礎知識:
1、定位芯片和CPU之間通過串口進行通信
2、串口和CPU之間傳輸的是ASCII格式的NMEA(National Marine Electronics Association)信息,如:
$GPGGA,092204.999,4250.5589,S,14718.5084,E,1,04,24.4,19.7,M,,,,0000*1F $GPGLL,4250.5589,S,14718.5084,E,092204.999,A*2D $GPGSV,3,1,10,20,78,331,45,01,59,235,47,22,41,069,,13,32,252,45*70 $GPRMC,092204.999,A,4250.5589,S,14718.5084,E,0.00,89.68,211200,,*25
基於以上兩點,要探知定位數據從GPS芯片到應用層的流程,最好的途徑就是從應用層輸出NEMA信息的地方開始。
NMEA資料參見:衛星定位數據NMEA介紹
一、GPS定位的應用層實現
Luckily,在應用層我們能夠通過onNmeaReceived()方法獲取到NMEA信息。例如以下Code Fragment:
public class GpsTestActivity extends ActionBarActivity { /* Other Codes */ /** 獲取系統的定位服務,記得在AndroidManifest中賦予定位方面的權限: * <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/> * <uses-permission android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS"/> * <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/> */ LocationManager mLocationService = (LocationManager) getSystemService(Context.LOCATION_SERVICE); mLocationService.addNmeaListener(mNmeaListener); private GpsStatus.NmeaListener mNmeaListener = new NmeaListener() { @Override public void onNmeaReceived(long timestamp, String nmea) { System.out.println(nmea + "\n"); } }; }
二、GPS定位的Framework層實現
GpsStatus.NmeaListener是一個接口類。來自GpsStatus.java文件:
frameworks\base\location\java\android\location\GpsStatus.java /** * Used for receiving NMEA sentences from the GPS. * NMEA 0183 is a standard for communicating with marine electronic devices * and is a common method for receiving data from a GPS, typically over a serial port. * See <a href="http://en.wikipedia.org/wiki/NMEA_0183">NMEA 0183</a> for more details. * You can implement this interface and call {@link LocationManager#addNmeaListener} * to receive NMEA data from the GPS engine. */ public interface NmeaListener { void onNmeaReceived(long timestamp, String nmea); }在上述App中。我們的應用程序實現了該方法。一旦NMEA數據到來。onNmeaReceived()方法就被調用一次,我們在Console上能夠看到原始的NEMA信息。
那么接下來,就要尋找nmea數據的來源了。
mNmeaListener通過LocationManager類的addNmeaListener()方法進行注冊(register):
frameworks\base\location\java\android\location\LocationManager.java /** * Adds an NMEA listener. * * @param listener a {@link GpsStatus.NmeaListener} object to register * * @return true if the listener was successfully added * * @throws SecurityException if the ACCESS_FINE_LOCATION permission is not present */ public boolean addNmeaListener(GpsStatus.NmeaListener listener) { boolean result; /* mNmeaListeners是LocationManager類的成員變量: * private final HashMap<GpsStatus.NmeaListener, GpsStatusListenerTransport> mNmeaListeners = * new HashMap<GpsStatus.NmeaListener, GpsStatusListenerTransport>(); */ if (mNmeaListeners.get(listener) != null) { // listener is already registered return true; } try { GpsStatusListenerTransport transport = new GpsStatusListenerTransport(listener); result = mService.addGpsStatusListener(transport); if (result) { mNmeaListeners.put(listener, transport); } } catch (RemoteException e) { Log.e(TAG, "RemoteException in registerGpsStatusListener: ", e); result = false; } return result; }這里,先檢測定義的NmeaListener有沒有被注冊過。若果沒有。注冊之。
注冊到哪里去了呢?
由mNmeaListeners成員的定義可知。和GpsStatus.NmeaListener進行關聯的是GpsStatusListenerTransport。而它是LocationManager類的一個內部類。
僅僅看相關的部分:
// This class is used to send GPS status events to the client's main thread. private class GpsStatusListenerTransport extends IGpsStatusListener.Stub { private final GpsStatus.NmeaListener mNmeaListener; // This must not equal any of the GpsStatus event IDs private static final int NMEA_RECEIVED = 1000; private class Nmea { long mTimestamp; String mNmea; Nmea(long timestamp, String nmea) { mTimestamp = timestamp; mNmea = nmea; } } private ArrayList<Nmea> mNmeaBuffer; //G psStatusListenerTransport(GpsStatus.Listener listener){} GpsStatusListenerTransport(GpsStatus.NmeaListener listener) { mNmeaListener = listener; mListener = null; mNmeaBuffer = new ArrayList<Nmea>(); } @Override public void onNmeaReceived(long timestamp, String nmea) { if (mNmeaListener != null) { synchronized (mNmeaBuffer) { mNmeaBuffer.add(new Nmea(timestamp, nmea)); } Message msg = Message.obtain(); msg.what = NMEA_RECEIVED; // remove any NMEA_RECEIVED messages already in the queue mGpsHandler.removeMessages(NMEA_RECEIVED); mGpsHandler.sendMessage(msg); } } private final Handler mGpsHandler = new Handler() { @Override public void handleMessage(Message msg) { if (msg.what == NMEA_RECEIVED) { synchronized (mNmeaBuffer) { int length = mNmeaBuffer.size(); for (int i = 0; i < length; i++) { Nmea nmea = mNmeaBuffer.get(i); mNmeaListener.onNmeaReceived(nmea.mTimestamp, nmea.mNmea); } mNmeaBuffer.clear(); } } else { // synchronize on mGpsStatus to ensure the data is copied atomically. } } } }; }在GpsStatusListenerTransport類中:
定義一個Nmea類型的鏈表mNmeaBuffer。一旦onNmeaReceived()接收到NMEA數據,新數據被載入到鏈表mNmeaBuffer中(mNmeaBuffer.add(new Nmea(timestamp, nmea))),然手置消息標志為NMEA_RECEIVED(msg.what = NMEA_RECEIVED)。
mGpsHandler對上述NMEA_RECEIVED消息進行處理。終於把傳過來的NMEA數據發往應用層GpsTestActivity中的onNmeaReceived()。
那么。GpsStatusListenerTransport類中onNmeaReceived(long timestamp, String nmea)方法的nmea數據有誰提供呢?
GpsStatusListenerTransport類繼承自IGpsStatusListener,由類前的字符"I"我們得知,它是一個擴展名為.aidl的文件。
注:
AIDL:AIDL機制用來完畢在進程之間進行通信(在Android中不同意進程間共享數據),它的具體知識另外Google之。
這里,我們再次見到了onNmeaReceived():
rameworks\base\location\java\android\location\IGpsStatusListener.aidl oneway interface IGpsStatusListener { void onGpsStarted(); void onGpsStopped(); void onFirstFix(int ttff); void onSvStatusChanged(int svCount, in int[] prns, in float[] snrs, in float[] elevations, in float[] azimuths, int ephemerisMask, int almanacMask, int usedInFixMask); void onNmeaReceived(long timestamp, String nmea); }注:
onewaykeyword是用來修飾遠程調用行為。使用該關鍵詞時。遠程調用不是堵塞的,它僅僅是發送事物數據並馬上返回。
接口的終於實現是把普通的遠程調用依照Binder線程池的調用規則來接收,假設oneway是使用在本地調用上,那么不會有不論什么影響,而且調用依舊是異步的。
以下。探究必須進入第三層。
三、GPS定位的Lib層實現
和IGpsStatusListener接頭的是GpsLocationProvider類:
frameworks\base\services\java\com\android\server\location\GpsLocationProvider.java public class GpsLocationProvider implements LocationProviderInterface { // 此處省略1000+N行 private ArrayList<Listener> mListeners = new ArrayList<Listener>(); private final class Listener implements IBinder.DeathRecipient { final IGpsStatusListener mListener; Listener(IGpsStatusListener listener) { mListener = listener; } @Override public void binderDied() { if (DEBUG) Log.d(TAG, "GPS status listener died"); synchronized (mListeners) { mListeners.remove(this); } if (mListener != null) { mListener.asBinder().unlinkToDeath(this, 0); } } } /** * called from native code to report NMEA data received */ private void reportNmea(long timestamp) { synchronized (mListeners) { int size = mListeners.size(); if (size > 0) { // don't bother creating the String if we have no listeners int length = native_read_nmea(mNmeaBuffer, mNmeaBuffer.length); String nmea = new String(mNmeaBuffer, 0, length); for (int i = 0; i < size; i++) { Listener listener = mListeners.get(i); try { listener.mListener.onNmeaReceived(timestamp, nmea); } catch (RemoteException e) { Log.w(TAG, "RemoteException in reportNmea"); mListeners.remove(listener); // adjust for size of list changing size--; } } } } } }GPS定位功能終於須要調用硬件實現,操作硬件就必須通過C/C++完畢。GpsLocationProvider中包括很多native方法,採用JNI機制為上層提供服務。
在上面的Code Frame中,通過調用本地方法native_read_nmea()獲取到NMEA數據,然后傳數據到IGpsStatusListener接口類的onNmeaReceived()方法。
reportNmea()是被JNI方法回調的方法,在 JNI 的實現中。通過這些方法的回調來傳遞JNI層的運行結果。
源代碼編譯出錯,解決這個問題去。。。
native_read_nmea()在GpsLocationProvider類中定義:
private native int native_read_nmea(byte[] buffer, int bufferSize);native指明它是本地方法。和它相應的C/C++文件的實現是:
static jint android_location_GpsLocationProvider_read_nmea(JNIEnv* env, jobject obj, jbyteArray nmeaArray, jint buffer_size);How?Next...
frameworks\base\services\jni\com_android_server_location_GpsLocationProvider.cpp static JNINativeMethod sMethods[] = { /* name, signature, funcPtr */ /* other members... */ {"native_read_nmea", "([BI)I", (void*)android_location_GpsLocationProvider_read_nmea}, /* other members... */ };JNINativeMethod是Android中採用的Java和C/C++函數的映射方式,並在當中描寫敘述了函數的參數和返回值:
typedef struct { const char* name; // Java文件里的本地方法 const char* signature; // 述了函數的參數和返回值 void* fnPtr; // 指針,指向具體的C/C++函數 } JNINativeMethod;具體內容這里還是不展開了。
來看android_location_GpsLocationProvider_read_nmea()的實現:
static jint android_location_GpsLocationProvider_read_nmea(JNIEnv* env, jobject obj, jbyteArray nmeaArray, jint buffer_size) { // this should only be called from within a call to reportNmea jbyte* nmea = (jbyte *)env->GetPrimitiveArrayCritical(nmeaArray, 0); int length = sNmeaStringLength; if (length > buffer_size) length = buffer_size; memcpy(nmea, sNmeaString, length); env->ReleasePrimitiveArrayCritical(nmeaArray, nmea, JNI_ABORT); return length; }盡管不清楚JNI深入含義,但這個函數意思還是挺明顯的。我們判斷:
第5行:用來動態分配內存。nmea指向獲取到的內存區域,同一時候把nmea和nmeaArray進行關聯;
第6行:sNmeaStringLength指示一次從串口讀取到的字節長度
第7、8行:在Java中調用native_read_nmea()方法時指明了我們須要取的數據長度,所以,假設從串口實際讀取的數據長度大於我們須要的,我們對串口數據進行截取:即。僅僅取指定長度的數據;
第9行:從串口讀出的數據存在sNmeaString中。這里Copy到nmea指向的內存區域;
第10行:nmea指向的內存區域中的數據交給nmeaArray,然后釋放nmea指向的內存空間。
這里也能夠看到,函數調用是通過nmeaArray傳遞NMEA數據的
以下應該看sNmeaStringLength、sNmeaString的設置過程:
static void nmea_callback(GpsUtcTime timestamp, const char* nmea, int length) { JNIEnv* env = AndroidRuntime::getJNIEnv(); // The Java code will call back to read these values // We do this to avoid creating unnecessary String objects sNmeaString = nmea; sNmeaStringLength = length; env->CallVoidMethod(mCallbacksObj, method_reportNmea, timestamp); checkAndClearExceptionFromCallback(env, __FUNCTION__); }method_reportNmea、、、有沒有熟悉的感覺?
對。在GpsLocationProvider類中見過reportNmea(long timestamp)函數。
以下的代碼片段表明,method_reportNmea()和reportNmea()是綁定在一起的。調用C/C++函數method_reportNmea,也就間接調用Java的reportNmea()方法。這中間的機制,就是JNI。
static void android_location_GpsLocationProvider_class_init_native(JNIEnv* env, jclass clazz) { /* other definitions... */ method_reportNmea = env->GetMethodID(clazz, "reportNmea", "(J)V"); /* other definitions... */ }而method_reportNmea是在nmea_callback()函數中被調用的。哪里又調用nmea_callback()函數呢?
Let's go to neXt Layer...
四、GPS定位HAL層的實現
所謂Android的HAL層。也就是是Linux的應用程序。至於串口詳細配置,比方寄存器配置、數據收發等芯片級實現,是在在Linux內核里的。
com_android_server_location_GpsLocationProvider.cpp文件里另外出現nmea_callback的地方是:
GpsCallbacks sGpsCallbacks = { sizeof(GpsCallbacks), location_callback, status_callback, sv_status_callback, nmea_callback, set_capabilities_callback, acquire_wakelock_callback, release_wakelock_callback, create_thread_callback, request_utc_time_callback, };GpsCallbacks結構體封裝了全部須要回調的函數( 確切的說是函數指針),sGpsCallbacks調用關系:
static jboolean android_location_GpsLocationProvider_init(JNIEnv* env, jobject obj) { // this must be set before calling into the HAL library if (!mCallbacksObj) mCallbacksObj = env->NewGlobalRef(obj); // fail if the main interface fails to initialize if (!sGpsInterface || sGpsInterface->init(&sGpsCallbacks) != 0) return false; /* other codes */ return true; }而android_location_GpsLocationProvider_init()在GpsLocationProvider類中調用native_init()時被調用:
static JNINativeMethod sMethods[] = { /* name, signature, funcPtr */ {"native_init", "()Z", (void*)android_location_GpsLocationProvider_init} }
這里,我們找到了和上層的關系。和下層怎樣打交道呢? 以下須要貼一大段代碼:
/** Represents the standard GPS interface. */ typedef struct { /** set to sizeof(GpsInterface) */ size_t size; /** * Opens the interface and provides the callback routines * to the implemenation of this interface. */ int (*init)( GpsCallbacks* callbacks ); /** Starts navigating. */ int (*start)( void ); /** Stops navigating. */ int (*stop)( void ); /** Closes the interface. */ void (*cleanup)( void ); /** Injects the current time. */ int (*inject_time)(GpsUtcTime time, int64_t timeReference, int uncertainty); /** Injects current location from another location provider * (typically cell ID). * latitude and longitude are measured in degrees * expected accuracy is measured in meters */ int (*inject_location)(double latitude, double longitude, float accuracy); /** * Specifies that the next call to start will not use the * information defined in the flags. GPS_DELETE_ALL is passed for * a cold start. */ void (*delete_aiding_data)(GpsAidingData flags); /** * min_interval represents the time between fixes in milliseconds. * preferred_accuracy represents the requested fix accuracy in meters. * preferred_time represents the requested time to first fix in milliseconds. */ int (*set_position_mode)(GpsPositionMode mode, GpsPositionRecurrence recurrence, uint32_t min_interval, uint32_t preferred_accuracy, uint32_t preferred_time); /** Get a pointer to extension information. */ const void* (*get_extension)(const char* name); } GpsInterface;GpsInterface結構體封裝了GPS實現的標准接口——接口,注意!
接口不就時用來連接兩端的嗎?一端是com_android_server_location_GpsLocationProvider.cpp文件中的實現,那還有一端就是。。。都探到這個地步了。還有一端應該是串口方式直接和GPS芯片打交道的Linux驅動了吧?
確是。可是還須要一個媒介:
struct gps_device_t { struct hw_device_t common; /** * Set the provided lights to the provided values. * * Returns: 0 on succes, error code on failure. */ const GpsInterface* (*get_gps_interface)(struct gps_device_t* dev); };然后,
static void android_location_GpsLocationProvider_class_init_native(JNIEnv* env, jclass clazz) { int err; hw_module_t* module; /* other codes..*/ err = hw_get_module(GPS_HARDWARE_MODULE_ID, (hw_module_t const**)&module); if (err == 0) { hw_device_t* device; err = module->methods->open(module, GPS_HARDWARE_MODULE_ID, &device); if (err == 0) { gps_device_t* gps_device = (gps_device_t *)device; sGpsInterface = gps_device->get_gps_interface(gps_device); } } /* other codes..*/ } static JNINativeMethod sMethods[] = { /* name, signature, funcPtr */ {"class_init_native", "()V", (void *)android_location_GpsLocationProvider_class_init_native}, }GpsLocationProvider.java通過class_init_native的調用實現對C/C++文件里android_location_GpsLocationProvider_class_init_native的調用。
com_android_server_location_GpsLocationProvider.cpp通過gps_device_t獲取操作GPS芯片的接口。
How????
重點來了:GPS_HARDWARE_MODULE_ID
對。就是GPS_HARDWARE_MODULE_ID!
往下看:
ardware\qcom\gps\loc_api\libloc_api\gps.c struct hw_module_t HAL_MODULE_INFO_SYM = { .tag = HARDWARE_MODULE_TAG, .version_major = 1, .version_minor = 0, .id = GPS_HARDWARE_MODULE_ID, .name = "loc_api GPS Module", .author = "Qualcomm USA, Inc.", .methods = &gps_module_methods, };有木有?GPS_HARDWARE_MODULE_ID。
hardware\qcom\gps\loc_api\libloc_api\gps.c extern const GpsInterface* gps_get_hardware_interface(); const GpsInterface* gps__get_gps_interface(struct gps_device_t* dev) { return gps_get_hardware_interface(); } static int open_gps(const struct hw_module_t* module, char const* name, struct hw_device_t** device) { struct gps_device_t *dev = malloc(sizeof(struct gps_device_t)); memset(dev, 0, sizeof(*dev)); dev->common.tag = HARDWARE_DEVICE_TAG; dev->common.version = 0; dev->common.module = (struct hw_module_t*)module; dev->get_gps_interface = gps__get_gps_interface; *device = (struct hw_device_t*)dev; return 0; } static struct hw_module_methods_t gps_module_methods = { .open = open_gps };流程非常清楚了:
gps_get_hardware_interface()函數在驅動程序中實現
——在gps__get_gps_interface()中被調用
——在open_gps()被調用
——在gps_module_methods中例化
——HAL_MODULE_INFO_SYM
const GpsInterface* gps_get_hardware_interface()函數在其它C文件實現。該C文件是和Linux驅動打交道的應用程序。基本功能:
1、open處理器CPU和GPS芯片連接的串口。
2、read串口NEMA數據。並解析。
3、依據上層傳進來的回調函數。打包數據,調用對應Callback。進而發送到Android應用層。
static const GpsInterface mGpsInterface = { .size =sizeof(GpsInterface), .init = gps_init, |--1、接收從上層傳下來的GpsCallbacks變量,用它初始化GpsState->callbacks成員 |--2、GpsState結構體的其它成員初始化 |--3、GpsState->init狀態設置為:STATE_INIT |--4、最重要:啟動GPS線程,進行數據的讀取、處理: state->thread = state->callbacks.create_thread_cb("gps", gps_state_thread, state); --gps_create_thread create_thread_cb; --typedef pthread_t (* gps_create_thread)(const char* name, void (*start)(void *), void* arg); .start = gps_start, --設置GPS的狀態為開始:GPS_STATUS_SESSION_BEGIN .stop = gps_stop, --設置GPS的狀態為結束:GPS_STATUS_SESSION_END .cleanup = gps_cleanup, --退出須要進行的一些清理工作,如GpsState->init = STATE_QUIT,GpsCallbacks指針歸null。信號量回收 .inject_time = gps_inject_time, --可為空函數 .inject_location = gps_inject_location, --可為空函數 .delete_aiding_data = gps_delete_aiding_data, --可為空函數 .set_position_mode = gps_set_position_mode, --設置GPS工作模式:單GPS、單BD、GPS/BD雙系統 .get_extension = gps_get_extension, --定位之外的擴展功能實現 }; state->thread = state->callbacks.create_thread_cb("gps", gps_state_thread, state); --static void gps_state_thread(void* arg): 1、state通過arg參數傳入函數 2、創建了Time和Nmea數據處理兩個線程 state->nmea_thread = state->callbacks.create_thread_cb("nmea_thread", gps_nmea_thread, state); --static void gps_nmea_thread(void* arg) --gps_opentty(state); nmea_reader_init(reader); --nmea_reader_parse(NmeaReader* r) { if (gps_state->callbacks.nmea_cb) { struct timeval tv; unsigned long long mytimems; gettimeofday(&tv,NULL); mytimems = tv.tv_sec * 1000 + tv.tv_usec / 1000; gps_state->callbacks.nmea_cb(mytimems, r->in, r->pos); D("reader_parse. %.*s ", r->pos, r->in ); } }
我們是從APP層NMEA信息輸出自定向下分析的,APP層信息輸出的終於起始是:gps_state->callbacks.nmea_cb(mytimems, r->in, r->pos);
到這里還有個問題:GPS芯片和CPU連接,使用的是哪個串口?這個串口號怎么確定的呢?
打算貼個完整HAL層的實例,考慮到代碼非常多,下篇在說吧。
。。