hive進行詞頻統計


統計文件信息:

$ /opt/cdh-5.3.6/hadoop-2.5.0/bin/hdfs dfs -text /user/hadoop/wordcount/input/wc.input
hadoop spark
spark hadoop
oracle mysql postgresql
postgresql oracle mysql
mysql mongodb
hdfs yarn mapreduce
yarn hdfs
zookeeper

針對於以上文件使用hive做詞頻統計:

create table docs (line string);

load data inpath '/user/hadoop/wordcount/input/wc.input' into table docs;

create table word_counts as
select word,count(1) as count from
(select explode(split(line,' ')) as word from docs) word
group by word
order by word;

分段解釋:

--使用split函數對表中行按空格進行分隔:

select split(line,' ') from docs;
["hadoop","spark",""]
["spark","hadoop"]
["oracle","mysql","postgresql"]
["postgresql","oracle","mysql"]
["mysql","mongodb"]
["hdfs","yarn","mapreduce"]
["yarn","hdfs"]
["zookeeper"]

--使用explode函數對split的結果集進行行拆列:

select explode(split(line,' ')) as word from docs;
word
hadoop
spark

spark
hadoop
oracle
mysql
postgresql
postgresql
oracle
mysql
mysql
mongodb
hdfs
yarn
mapreduce
yarn
hdfs
zookeeper

--以上輸出內容已經滿足對其做統計分析,這時通過sql對其進行分析:

select word,count(1) as count from
(select explode(split(line,' ')) as word from docs) word
group by word
order by word;

word    count
     1
hadoop    2
hdfs    2
mapreduce    1
mongodb    1
mysql    3
oracle    2
postgresql    2
spark    2
yarn    2
zookeeper    1


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM