一、hadoop自帶的性能基准評測工具
(一)TestDFSIO
1、測試寫性能
(1)若有必要,先刪除歷史數據
$hadoop jar /home/hadoop/hadoop/share/hadoop/mapreduce2/hadoop-mapreduce-client-jobclient-2.3.0-cdh5.1.2-tests.jar TestDFSIO -clean
(2)執行測試
$hadoop jar /home/hadoop/hadoop/share/hadoop/mapreduce2/hadoop-mapreduce-client-jobclient-2.3.0-cdh5.1.2-tests.jar TestDFSIO -write -nrFiles 5 -fileSize 20
(3)查看結果:每一次測試生成一個結果,並以附加的形式添加到TestDFSIO_results.log中
$cat TestDFSIO_results.log
----- TestDFSIO ----- : write
Date & time: Mon May 11 09:41:34 HKT 2015
Number of files:
Total MBytes processed: 100.0
Throughput mb/sec: 21.468441391155004
Average IO rate mb/sec: 25.366744995117188
IO rate std deviation: 12.744636924030177
Test exec time sec: 27.585
----- TestDFSIO ----- : write
Date & time: Mon May 11 09:42:28 HKT 2015
Number of files: 5
Total MBytes processed: 100.0
Throughput mb/sec: 22.779043280182233
Average IO rate mb/sec: 25.440486907958984
IO rate std deviation: 9.930490103638768
Test exec time sec: 26.67
(4)結果說明
Total MBytes processed : 總共需要寫入的數據量 100MB
Throughput mb/sec :總共需要寫入的數據量/(每個map任務實際寫入數據的執行時間之和(這個時間會遠小於Test exec time sec))==》100/(map1寫時間+map2寫時間+...)
Average IO rate mb/sec :(每個map需要寫入的數據量/每個map任務實際寫入數據的執行時間)之和/任務數==》(20/map1寫時間+20/map2寫時間+...)/1000,所以這個值跟上面一個值總是存在差異。
IO rate std deviation :上一個值的標准差
Test exec time sec :整個job的執行時間
2、測試讀性能
(1)執行測試
$ hadoop jar /home/hadoop/hadoop/share/hadoop/mapreduce2/hadoop-mapreduce-client-jobclient-2.3.0-cdh5.1.2-tests.jar TestDFSIO -read -nrFiles 5 -fileSize 20
(2)查看測試結果
$ cat TestDFSIO_results.log
----- TestDFSIO ----- : read
Date & time: Mon May 11 09:53:27 HKT 2015
Number of files: 5
Total MBytes processed: 100.0
Throughput mb/sec: 534.75935828877
Average IO rate mb/sec: 540.4888916015625
IO rate std deviation: 53.93029580221512
Test exec time sec: 26.704
(3)結果說明
結果各項意思與write相同,但其讀速率比寫速率快很多,而總執行時間非常接近。真正測試時,應該用較大的數據量來執行,才可體現出二者的差異。
(二)排序測試
在api文檔中搜索terasort,可查詢相關信息。
排序測試的三個基本步驟:
生成隨機數據??>排序??>驗證排序結果
關於terasort更詳細的原理,見http://blog.csdn.net/yuesichiu/article/details/17298563
1、生成隨機數據
$ hadoop jar /home/hadoop/hadoop/share/hadoop/mapreduce2/hadoop-mapreduce-examples-2.3.0-cdh5.1.2.jar teragen -Dmapreduce.job.maps=5 10000000 /tmp/hadoop/terasort
此步驟將在hdfs中的 /tmp/hadoop/terasort 中生成數據,
$ hadoop fs -ls /tmp/hadoop/terasort
Found 6 items
-rw-r----- 3 hadoop supergroup 0 2015-05-11 11:32 /tmp/hadoop/terasort/_SUCCESS
-rw-r----- 3 hadoop supergroup 200000000 2015-05-11 11:32 /tmp/hadoop/terasort/part-m-00000
-rw-r----- 3 hadoop supergroup 200000000 2015-05-11 11:32 /tmp/hadoop/terasort/part-m-00001
-rw-r----- 3 hadoop supergroup 200000000 2015-05-11 11:32 /tmp/hadoop/terasort/part-m-00002
-rw-r----- 3 hadoop supergroup 200000000 2015-05-11 11:32 /tmp/hadoop/terasort/part-m-00003
-rw-r----- 3 hadoop supergroup 200000000 2015-05-11 11:32 /tmp/hadoop/terasort/part-m-00004
$ hadoop fs -du -s -h /tmp/hadoop/terasort
953.7 M /tmp/hadoop/terasort
生成的5個數據竟然是每個200M,未解,為什么不是10M???
2、運行測試
$hadoop jar /home/hadoop/hadoop/share/hadoop/mapreduce2/hadoop-mapreduce-examples-2.3.0-cdh5.1.2.jar terasort -Dmapreduce.job.maps=5 /tmp/hadoop/terasort /tmp/hadoop/terasort_out
Spent 354ms computing base-splits.
Spent 8ms computing TeraScheduler splits.
Computing input splits took 365ms
Sampling 10 splits of 10
Making 1 from 100000 sampled records
Computing parititions took 6659ms
Spent 7034ms computing partitions.
3、驗證結果
$ hadoop jar /home/hadoop/hadoop/share/hadoop/mapreduce2/hadoop-mapreduce-examples-2.3.0-cdh5.1.2.jar teravalidate /tmp/hadoop/terasort_out /tmp/hadoop/terasort_report
Spent 44ms computing base-splits.
Spent 7ms computing TeraScheduler splits.
二、hibench
hibench4.0測試不成功,使用3.0代替
1、下載並解壓
wget https://codeload.github.com/intel-hadoop/HiBench/zip/HiBench-3.0.0
unzip HiBench-3.0.0
2、修改文件 bin/hibench-config.sh,主要是這幾個
export JAVA_HOME=/home/hadoop/jdk1.7.0_67
export HADOOP_HOME=/home/hadoop/hadoop
export HADOOP_EXECUTABLE=/home/hadoop/hadoop//bin/hadoop
export HADOOP_CONF_DIR=/home/hadoop/conf
export HADOOP_EXAMPLES_JAR=/home/hadoop/hadoop/share/hadoop/mapreduce2/hadoop-mapreduce-examples-2.3.0-cdh5.1.2.jar
export MAPRED_EXECUTABLE=/home/hadoop/hadoop/bin/mapred
#Set the varaible below only in YARN mode
export HADOOP_JOBCLIENT_TESTS_JAR=/home/hadoop/hadoop/share/hadoop/mapreduce2/hadoop-mapreduce-examples-2.3.0-cdh5.1.2.jar/hadoop-mapreduce-client-jobclient-2.3.0-cdh5.1.2-tests.jar
3、修改conf/benchmarks.lst,哪些不想運行的將之注釋掉
4、運行
bin/run-all.sh
5、查看結果
在當前目錄會生成hibench.report文件,內容如下
Type Date Time Input_data_size Duration(s) Throughput(bytes/s) Throughput/node
WORDCOUNT 2015-05-12 19:32:33 251.248
DFSIOE-READ 2015-05-12 19:54:29 54004092852 463.863 116422505 38807501
DFSIOE-WRITE 2015-05-12 20:02:57 27320849148 498.132 54846605 18282201
PAGERANK 2015-05-12 20:27:25 711.391
SORT 2015-05-12 20:33:21 243.603
TERASORT 2015-05-12 20:40:34 10000000000 266.796 37481821 12493940
SLEEP 2015-05-12 20:40:40 0 .177 0 0