今天在用Streaming-Python處理一個MapReduce程序時,發現reducer失敗,原由於耗費內存達到極限了。細致查看代碼時,發現有一個集合里保存着URL,而URL長度是比較長的,直接保存確實是耗費內存,於是想到用壓縮存儲,然后用的時候再解壓,盡管處理時間添加。可是耗費內存大大減少!
詳細就是使用zlib模塊
import zlib raw_data = "hello,world,ooooooooooooxxxxxxxxxxx" zb_data = zlib.compress(raw_data) print "len(raw_data)=%d, len(zb_data)=%d, compression ratio=%.2f"\ % (len(raw_data), len(zb_data), float(len(zb_data))/len(raw_data)) # len(raw_data)=35, len(zb_data)=25, compression ratio=0.71 raw_data2 = zlib.decompress(zb_data) print raw_data2
假設存在網絡傳輸。上面的方法可能失效;比如我跑了一個MapReduce,mapper中壓縮,reducer中解壓,結果報錯:
Traceback (most recent call last): File "/hadoop/yarn/local/usercache/lming_08/appcache/application_1415110953023_46173/container_1415110953023_46173_01_000018/./build_visitor_company_ulti_info_red.py", line 25, in <module> urllist += zlib.decompress(urlitem) + "" zlib.error: Error -3 while decompressing data: incorrect header check log4j:WARN No appenders could be found for logger (org.apache.hadoop.hdfs.DFSClient). log4j:WARN Please initialize the log4j system properly. log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.臨時還沒找到有效辦法。