多光譜與高光譜的區別


轉自:http://blog.sina.com.cn/s/blog_b37338430102v6dx.html

 

隨着光譜分辨率的不斷提高,光學遙感的發展過程可分為:全色(Panchromatic)→彩色(Color Photography)→多光譜(Multispectral)→高光譜(hyspectral)。

注:

全色波段(Panchromatic band),因為是單波段,在圖上顯示是灰度圖片。全色遙感影像一般空間分辨率高,但無法顯示地物色彩。 實際操作中,我們經常將之與波段影象融合處理,得到既有全色影象的高分辨率,又有多波段影象的彩色信息的影象。
全色波段,一般指使用0.5微米到0.75微米左右的單波段,即從綠色往后的可見光波段。全色遙感影象也就是對地物輻射中全色波段的影象攝取,因為是單波段,在圖上顯示是灰度圖片。全色遙感影象一般空間分辨率高,但無法顯示地物色彩。

多光譜遙感

多光譜遙感:將地物輻射電磁破分割成若干個較窄的光譜段,以攝影或掃描的方式,在同一時間獲得同一目標不同波段信息的遙感技術。
原理:不同地物有不同的光譜特性,同一地物則具有相同的光譜特性。不同地物在不同波段的輻射能量有差別,取得的不同波段圖像上有差別。
優點:多光譜遙感不僅可以根據影像的形態和結構的差異判別地物,還可以根據光譜特性的差異判別地物,擴大了遙感的信息量。
航空攝影用的多光譜攝影與陸地衛星所用的多光譜掃描均能得到不同普段的遙感資料,分普段的圖像或數據可以通過攝影彩色合成或計算機圖像處理,獲得比常規方法更為豐富的圖像,也為地物影像計算機識別與分類提供了可能。

高光譜

高光譜遙感起源於20世紀70年代初的多光譜遙感,它將成像技術與光譜技術結合在一起,在對目標的空間特征成像的同時,對每個空間像元經過色散形成幾十乃至幾百個窄波段以進行連續的光譜覆蓋,這樣形成的遙感數據可以用“圖像立方體”來形象的描述。同傳統遙感技術相比,其所獲取的圖像包含豐富的空間、輻射和光譜三重信息。
高光譜遙感技術已經成為當前遙感領域的前沿技術。
高光譜遙感具有不同於傳統遙感的新特點:
1)波段多:可以為每個像元提供十幾、數百甚至上千個波段;
2)光譜范圍窄:波段范圍一般小於10nm;
3)波段連續:有些傳感器可以在350~2500nm的太陽光譜范圍內提供幾乎連續的地物光譜;
4)數據量大:隨着波段數的增加,數據量成指數增加;
5)信息冗余增加:由於相鄰波段高度相關,冗余信息也相對增加。
優點:
1)有利於利用光譜特征分析來研究地物;
2)有利於采用各種光譜匹配模型;
3)有利於地物的精細分類與識別;

異同點
國際遙感界的共識是光譜分辨率在λ/10數量級范圍的稱為多光譜(Multispectral),這樣的遙感器在可見光近紅外光譜區 只有幾個波段,如美國 LandsatMSS,TM,法國的SPOT等;而光譜分辨率在λ/100的遙感信息稱之為高光譜遙感(HyPerspectral);隨着遙感光譜分辨 率的進一步提高,在達到λ/1000時,遙感即進入超高光譜(ultraspectral)階段(陳述彭等,1998)。
高光譜和多光譜實質上的差別就是:高光譜的波段較多,普帶較窄。(Hyperion有233~309個波段,MODIS有36個波段)
多光譜相對波段較少。(如ETM+,8個波段,分為紅波段,綠波段,藍波段,可見光,熱紅外(2個),近紅外和全色波段)
高光譜遙感就是多比多光譜遙感的光譜分辨率更高,但光譜分辨率高的同時空間分辨率會降低。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM