作者: xumingming | 可以轉載, 但必須以超鏈接形式標明文章原始出處和作者信息及版權聲明
網址: http://xumingming.sinaapp.com/756/twitter-storm-drpc/
本文翻譯自: https://github.com/nathanmarz/storm/wiki/Distributed-RPC 。
Storm里面引入DRPC主要是利用storm的實時計算能力來並行化CPU intensive的計算。DRPC的storm topology以函數的參數流作為輸入,而把這些函數調用的返回值作為topology的輸出流。
DRPC其實不能算是storm本身的一個特性, 它是通過組合storm的原語spout,bolt, topology而成的一種模式(pattern)。本來應該把DRPC單獨打成一個包的, 但是DRPC實在是太有用了,所以我們我們把它和storm捆綁在一起。
概覽
Distributed RPC是由一個”DPRC Server”協調的(storm自帶了一個實現)。
DRPC服務器協調
1) 接收一個RPC請求。
2) 發送請求到storm topology
3) 從storm topology接收結果。
4) 把結果發回給等待的客戶端。
從客戶端的角度來看一個DRPC調用跟一個普通的RPC調用沒有任何區別。比如下面是客戶端如何調用RPC: reach方法的,方法的參數是: http://twitter.com。
DRPCClient client = new DRPCClient("drpc-host", 3772); String result = client.execute("reach", "http://twitter.com");
DRPC的工作流大致是這樣的:
客戶端給DRPC服務器發送要執行的方法的名字,以及這個方法的參數。實現了這個函數的topology使用 DRPCSpout
從DRPC服務器接收函數調用流。每個函數調用被DRPC服務器標記了一個唯一的id。 這個topology然后計算結果,在topology的最后一個叫做 ReturnResults
的bolt會連接到DRPC服務器,並且把這個調用的結果發送給DRPC服務器(通過那個唯一的id標識)。DRPC服務器用那個唯一id來跟等待的客戶端匹配上,喚醒這個客戶端並且把結果發送給它。
LinearDRPCTopologyBuilder
Storm自帶了一個稱作 LinearDRPCTopologyBuilder 的topology builder, 它把實現DRPC的幾乎所有步驟都自動化了。這些步驟包括:
- 設置spout
- 把結果返回給DRPC服務器
- 給bolt提供有限聚合幾組tuples的能力
讓我們看一個簡單的例子。下面是一個把輸入參數后面添加一個”!”的DRPC topology的實現:
public static class ExclaimBolt implements IBasicBolt { public void prepare(Map conf, TopologyContext context) { } public void execute(Tuple tuple, BasicOutputCollector collector) { String input = tuple.getString(1); collector.emit(new Values(tuple.getValue(0), input + "!")); } public void cleanup() { } public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("id", "result")); } } public static void main(String[] args) throws Exception { LinearDRPCTopologyBuilder builder = new LinearDRPCTopologyBuilder("exclamation"); builder.addBolt(new ExclaimBolt(), 3); // ... }
可以看出來, 我們需要做的事情非常的少。創建 LinearDRPCTopologyBuilder
的時候,你需要告訴它你要實現的DRPC函數的名字。一個DRPC服務器可以協調很多函數,函數與函數之間靠函數名字來區分。你聲明的第一個bolt會接收兩維tuple,tuple的第一個field是request-id,第二個field是這個請求的參數。 LinearDRPCTopologyBuilder
同時要求我們topology的最后一個bolt發射一個二維tuple: 第一個field是request-id, 第二個field是這個函數的結果。最后所有中間tuple的第一個field必須是request-id。
在這里例子里面 ExclaimBolt
簡單地在輸入tuple的第二個field后面再添加一個”!”,其余的事情都由 LinearDRPCTopologyBuilder
幫我們搞定:鏈接到DRPC服務器,並且把結果發回。
本地模式DRPC
DRPC可以以本地模式運行。下面就是以本地模式運行上面例子的代碼:
LocalDRPC drpc = new LocalDRPC(); LocalCluster cluster = new LocalCluster(); cluster.submitTopology( "drpc-demo", conf, builder.createLocalTopology(drpc) ); System.out.println("Results for 'hello':" + drpc.execute("exclamation", "hello")); cluster.shutdown(); drpc.shutdown();
首先你創建一個 LocalDRPC
對象。 這個對象在進程內模擬一個DRPC服務器,跟 LocalClusterLinearTopologyBuilder
有單獨的方法來創建本地的topology和遠程的topology。在本地模式里面LocalDRPC
對象不和任何端口綁定,所以我們的topology對象需要知道和誰交互。這就是為什么createLocalTopology
方法接受一個 LocalDRPC
對象作為輸入的原因。
把topology啟動了之后,你就可以通過調用 LocalDRPC
對象的 execute
來調用RPC方法了。
遠程模式DRPC
在一個真實集群上面DRPC也是非常簡單的,有三個步驟:
- 啟動DRPC服務器
- 配置DRPC服務器的地址
- 提交DRPC topology到storm集群里面去。
我們可以通過下面的 storm
腳本命令來啟動DRPC服務器:
bin/storm drpc
接着, 你需要讓你的storm集群知道你的DRPC服務器在哪里。 DRPCSpout
需要這個地址從而可以從DRPC服務器來接收函數調用。這個可以配置在 storm.yaml
或者通過代碼的方式配置在topology里面。通過 storm.yaml
配置是這樣的:
drpc.servers:
- "drpc1.foo.com"
- "drpc2.foo.com"
最后,你通過 StormSubmitter
對象來提交DRPC topology — 跟你提交其它topology沒有區別。如果要以遠程的方式運行上面的例子,用下面的代碼:
StormSubmitter.submitTopology( "exclamation-drpc", conf, builder.createRemoteTopology() );
我們用 createRemoteTopology
方法來創建運行在真實集群上的DRPC topology。
一個更復雜的例子
上面的DRPC例子只是為了介紹DRPC概念的一個簡單的例子。下面讓我們看一個復雜的、確實需要storm的並行計算能力的例子, 這個例子計算twitter上面一個url的reach值。
首先介紹一下什么是reach值,要計算一個URL的reach值,我們需要:
- 獲取所有微薄里面包含這個URL的人
- 獲取這些人的粉絲
- 把這些粉絲去重
- 獲取這些去重之后的粉絲個數 — 這就是reach
一個簡單的reach計算可能會有成千上萬個數據庫調用,並且可能設計到百萬數量級的微薄用戶。這個確實可以說是CPU intensive的計算了。你會看到的是,在storm上面來實現這個是非常非常的簡單。在單台機器上面, 一個reach計算可能需要花費幾分鍾。而在一個storm集群里面,即時是最難的URL, 也只需要幾秒。
一個reach topolgoy的例子可以在 這里 找到(storm-starter)。reach topology是這樣定義的:
LinearDRPCTopologyBuilder builder = new LinearDRPCTopologyBuilder("reach"); builder.addBolt(new GetTweeters(), 3); builder.addBolt(new GetFollowers(), 12) .shuffleGrouping(); builder.addBolt(new PartialUniquer(), 6) .fieldsGrouping(new Fields("id", "follower")); builder.addBolt(new CountAggregator(), 2) .fieldsGrouping(new Fields("id"));
這個topology分四步執行:
GetTweeters
獲取所發微薄里面包含制定URL的所有用戶。它接收輸入流:[id, url]
, 它輸出:[id, tweeter]
. 每一個URL tuple會對應到很多tweeter
tuple。GetFollowers
獲取這些tweeter的粉絲。它接收輸入流:[id, tweeter]
, 它輸出:[id, follower]
PartialUniquer
通過粉絲的id來group粉絲。這使得相同的粉絲會被引導到同一個task。因此不同的task接收到的粉絲是不同的 — 從而起到去重的作用。它的輸出流:[id, count]
即輸出這個task上統計的粉絲個數。- 最后,
CountAggregator
接收到所有的局部數量, 把它們加起來就算出了我們要的reach值。
我們來看一下 PartialUniquer
的實現:
public static class PartialUniquer implements IRichBolt, FinishedCallback { OutputCollector _collector; Map<Object, Set<String>> _sets = new HashMap<Object, Set<String>>(); public void prepare(Map conf, TopologyContext context, OutputCollector collector) { _collector = collector; } public void execute(Tuple tuple) { Object id = tuple.getValue(0); Set<String> curr = _sets.get(id); if(curr==null) { curr = new HashSet<String>(); _sets.put(id, curr); } curr.add(tuple.getString(1)); _collector.ack(tuple); } public void cleanup() { } public void finishedId(Object id) { Set<String> curr = _sets.remove(id); int count; if(curr!=null) { count = curr.size(); } else { count = 0; } _collector.emit(new Values(id, count)); } public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("id", "partial-count")); } }
當 PartialUniquer
在 execute
方法里面接收到一個 粉絲tuple
的時候, 它把這個tuple添加到當前request-id對應的 Set
里面去。
PartialUniquer
同時也實現了 FinishedCallback
接口, 實現這個接口是告訴 LinearDRPCTopologyBuilder
它想在接收到某個request-id的所有tuple之后得到通知,回調函數則是finishedId 方法。在這個回調函數里面 PartialUniquer
發射當前這個request-id在這個task上的粉絲數量。
在這個簡單接口的背后,我們是使用 CoordinatedBolt
來檢測什么時候一個bolt接收到某個request的所有的tuple的。 CoordinatedBolt
是利用direct stream來實現這種協調的。
這個topology的其余部分就非常的明了了。我們可以看到的是reach計算的每個步驟都是並行計算出來的,而且實現這個DRPC的topology是那么的簡單。
非線性DRPC Topology
LinearDRPCTopologyBuilder
只能搞定"線性"的DRPC topology。所謂的線性就是說你的計算過程是一步接着一步, 串聯。我們不難想象還有其它的可能 -- 並聯(回想一下初中物理里面學的並聯電路吧), 現在你如果想解決這種這種並聯的case的話, 那么你需要自己去使用 CoordinatedBolt
來處理所有的事情了。如果真的有這種use case的話, 在mailing list上大家討論一下吧。
LinearDRPCTopologyBuilder的工作原理
- DRPCSpout發射tuple:
[args, return-info]
。return-info
包含DRPC服務器的主機地址,端口以及當前請求的request-id - DRPC Topology包含以下元素:
- DRPCSpout
- PrepareRequest(生成request-id, return info以及args)
- CoordinatedBolt
- JoinResult -- 組合結果和return info
- ReturnResult -- 連接到DRPC服務器並且返回結果
- LinearDRPCTopologyBuilder是利用storm的原語來構建高層抽象的很好的例子。
高級特性
- 如何利用KeyedFairBolt來同時處理多個請求
- 如何直接使用CoordinatedBolt
一個更復雜的例子的全部代碼
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package cn.ljh.storm.drpc; import org.apache.storm.Config; import org.apache.storm.LocalCluster; import org.apache.storm.LocalDRPC; import org.apache.storm.StormSubmitter; import org.apache.storm.coordination.BatchOutputCollector; import org.apache.storm.drpc.LinearDRPCTopologyBuilder; import org.apache.storm.task.TopologyContext; import org.apache.storm.topology.BasicOutputCollector; import org.apache.storm.topology.OutputFieldsDeclarer; import org.apache.storm.topology.base.BaseBasicBolt; import org.apache.storm.topology.base.BaseBatchBolt; import org.apache.storm.tuple.Fields; import org.apache.storm.tuple.Tuple; import org.apache.storm.tuple.Values; import java.util.*; /** * This is a good example of doing complex Distributed RPC on top of Storm. This program creates a topology that can * compute the reach for any URL on Twitter in realtime by parallelizing the whole computation. * <p/> * Reach is the number of unique people exposed to a URL on Twitter. To compute reach, you have to get all the people * who tweeted the URL, get all the followers of all those people, unique that set of followers, and then count the * unique set. It's an intense computation that can involve thousands of database calls and tens of millions of follower * records. * <p/> * This Storm topology does every piece of that computation in parallel, turning what would be a computation that takes * minutes on a single machine into one that takes just a couple seconds. * <p/> * For the purposes of demonstration, this topology replaces the use of actual DBs with in-memory hashmaps. * * @see <a href="http://storm.apache.org/documentation/Distributed-RPC.html">Distributed RPC</a> */ public class ReachTopology { public static Map<String, List<String>> TWEETERS_DB = new HashMap<String, List<String>>() {{ put("foo.com/blog/1", Arrays.asList("sally", "bob", "tim", "george", "nathan")); put("engineering.twitter.com/blog/5", Arrays.asList("adam", "david", "sally", "nathan")); put("tech.backtype.com/blog/123", Arrays.asList("tim", "mike", "john")); }}; public static Map<String, List<String>> FOLLOWERS_DB = new HashMap<String, List<String>>() {{ put("sally", Arrays.asList("bob", "tim", "alice", "adam", "jim", "chris", "jai")); put("bob", Arrays.asList("sally", "nathan", "jim", "mary", "david", "vivian")); put("tim", Arrays.asList("alex")); put("nathan", Arrays.asList("sally", "bob", "adam", "harry", "chris", "vivian", "emily", "jordan")); put("adam", Arrays.asList("david", "carissa")); put("mike", Arrays.asList("john", "bob")); put("john", Arrays.asList("alice", "nathan", "jim", "mike", "bob")); }}; public static class GetTweeters extends BaseBasicBolt { public void execute(Tuple tuple, BasicOutputCollector collector) { Object id = tuple.getValue(0); String url = tuple.getString(1); List<String> tweeters = TWEETERS_DB.get(url); if (tweeters != null) { for (String tweeter : tweeters) { collector.emit(new Values(id, tweeter)); } } } public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("id", "tweeter")); } } public static class GetFollowers extends BaseBasicBolt { public void execute(Tuple tuple, BasicOutputCollector collector) { Object id = tuple.getValue(0); String tweeter = tuple.getString(1); List<String> followers = FOLLOWERS_DB.get(tweeter); if (followers != null) { for (String follower : followers) { collector.emit(new Values(id, follower)); } } } public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("id", "follower")); } } public static class PartialUniquer extends BaseBatchBolt { BatchOutputCollector _collector; Object _id; Set<String> _followers = new HashSet<String>(); public void prepare(Map conf, TopologyContext context, BatchOutputCollector collector, Object id) { _collector = collector; _id = id; } public void execute(Tuple tuple) { //利用set的特性來去重。 _followers.add(tuple.getString(1)); } public void finishBatch() { //同一個task處理完了相同id的tuple之后調用。 _collector.emit(new Values(_id, _followers.size())); } public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("id", "partial-count")); } } public static class CountAggregator extends BaseBatchBolt { BatchOutputCollector _collector; Object _id; int _count = 0; public void prepare(Map conf, TopologyContext context, BatchOutputCollector collector, Object id) { _collector = collector; _id = id; } public void execute(Tuple tuple) { _count += tuple.getInteger(1); } public void finishBatch() { _collector.emit(new Values(_id, _count)); } public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("id", "reach")); } } public static LinearDRPCTopologyBuilder construct() { LinearDRPCTopologyBuilder builder = new LinearDRPCTopologyBuilder("reach"); builder.addBolt(new GetTweeters(), 1); builder.addBolt(new GetFollowers(), 1).shuffleGrouping(); builder.addBolt(new PartialUniquer(), 2).fieldsGrouping(new Fields("id", "follower")); builder.addBolt(new CountAggregator(), 1).fieldsGrouping(new Fields("id")); return builder; } public static void main(String[] args) throws Exception { LinearDRPCTopologyBuilder builder = construct(); Config conf = new Config(); if (args == null || args.length == 0) { conf.setMaxTaskParallelism(3); LocalDRPC drpc = new LocalDRPC(); LocalCluster cluster = new LocalCluster(); cluster.submitTopology("reach-drpc", conf, builder.createLocalTopology(drpc)); String[] urlsToTry = new String[]{ "foo.com/blog/1", "engineering.twitter.com/blog/5", "notaurl.com" }; for (String url : urlsToTry) { System.out.println("Reach of " + url + ": " + drpc.execute("reach", url)); } cluster.shutdown(); drpc.shutdown(); } else { conf.setNumWorkers(6); StormSubmitter.submitTopologyWithProgressBar(args[0], conf, builder.createRemoteTopology()); } } }
storm命令topoloy提交
storm jar /home/test/storm-helloworld-0.0.1-SNAPSHOT-jar-with-dependencies.jar cn.ljh.storm.drpc.ReachTopology ReachTopology
客戶端代碼
package cn.ljh.storm.drpc; import org.apache.storm.Config; import org.apache.storm.utils.DRPCClient; public class DRPCReachClient { public static void main(String[] args) throws Exception { Config conf = new Config(); conf.setDebug(false); conf.put("storm.thrift.transport", "org.apache.storm.security.auth.SimpleTransportPlugin"); conf.put(Config.STORM_NIMBUS_RETRY_TIMES, 3); conf.put(Config.STORM_NIMBUS_RETRY_INTERVAL, 10); conf.put(Config.STORM_NIMBUS_RETRY_INTERVAL_CEILING, 20); conf.put(Config.DRPC_MAX_BUFFER_SIZE, 1048576); DRPCClient drpcClient = new DRPCClient(conf, "192.168.137.180", 3772); System.out.println(drpcClient.execute("reach", "foo.com/blog/1")); } }