計算圖設計
很簡單的實踐,
- 多了個隱藏層
- 沒有上節的高斯噪聲
- 網絡寫法由上節的面向對象改為了函數式編程,
其他沒有特別需要注意的,實現如下:
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
learning_rate = 0.01 # 學習率
training_epochs = 20 # 訓練輪數,1輪等於n_samples/batch_size
batch_size = 128 # batch容量
display_step = 1 # 展示間隔
example_to_show = 10 # 展示圖像數目
n_hidden_units = 256
n_input_units = 784
n_output_units = n_input_units
def WeightsVariable(n_in, n_out, name_str):
return tf.Variable(tf.random_normal([n_in, n_out]), dtype=tf.float32, name=name_str)
def biasesVariable(n_out, name_str):
return tf.Variable(tf.random_normal([n_out]), dtype=tf.float32, name=name_str)
def encoder(x_origin, activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer'):
Weights = WeightsVariable(n_input_units, n_hidden_units, 'Weights')
biases = biasesVariable(n_hidden_units, 'biases')
x_code = activate_func(tf.add(tf.matmul(x_origin, Weights), biases))
return x_code
def decode(x_code, activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer'):
Weights = WeightsVariable(n_hidden_units, n_output_units, 'Weights')
biases = biasesVariable(n_output_units, 'biases')
x_decode = activate_func(tf.add(tf.matmul(x_code, Weights), biases))
return x_decode
with tf.Graph().as_default():
with tf.name_scope('Input'):
X_input = tf.placeholder(tf.float32, [None, n_input_units])
with tf.name_scope('Encode'):
X_code = encoder(X_input)
with tf.name_scope('decode'):
X_decode = decode(X_code)
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.pow(X_input - X_decode, 2))
with tf.name_scope('train'):
Optimizer = tf.train.RMSPropOptimizer(learning_rate)
train = Optimizer.minimize(loss)
init = tf.global_variables_initializer()
# 因為使用了tf.Graph.as_default()上下文環境
# 所以下面的記錄必須放在上下文里面,否則記錄下來的圖是空的(get不到上面的default)
writer = tf.summary.FileWriter(logdir='logs', graph=tf.get_default_graph())
writer.flush()
計算圖:

訓練程序
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
learning_rate = 0.01 # 學習率
training_epochs = 20 # 訓練輪數,1輪等於n_samples/batch_size
batch_size = 128 # batch容量
display_step = 1 # 展示間隔
example_to_show = 10 # 展示圖像數目
n_hidden_units = 256
n_input_units = 784
n_output_units = n_input_units
def WeightsVariable(n_in, n_out, name_str):
return tf.Variable(tf.random_normal([n_in, n_out]), dtype=tf.float32, name=name_str)
def biasesVariable(n_out, name_str):
return tf.Variable(tf.random_normal([n_out]), dtype=tf.float32, name=name_str)
def encoder(x_origin, activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer'):
Weights = WeightsVariable(n_input_units, n_hidden_units, 'Weights')
biases = biasesVariable(n_hidden_units, 'biases')
x_code = activate_func(tf.add(tf.matmul(x_origin, Weights), biases))
return x_code
def decode(x_code, activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer'):
Weights = WeightsVariable(n_hidden_units, n_output_units, 'Weights')
biases = biasesVariable(n_output_units, 'biases')
x_decode = activate_func(tf.add(tf.matmul(x_code, Weights), biases))
return x_decode
with tf.Graph().as_default():
with tf.name_scope('Input'):
X_input = tf.placeholder(tf.float32, [None, n_input_units])
with tf.name_scope('Encode'):
X_code = encoder(X_input)
with tf.name_scope('decode'):
X_decode = decode(X_code)
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.pow(X_input - X_decode, 2))
with tf.name_scope('train'):
Optimizer = tf.train.RMSPropOptimizer(learning_rate)
train = Optimizer.minimize(loss)
init = tf.global_variables_initializer()
# 因為使用了tf.Graph.as_default()上下文環境
# 所以下面的記錄必須放在上下文里面,否則記錄下來的圖是空的(get不到上面的default)
writer = tf.summary.FileWriter(logdir='logs', graph=tf.get_default_graph())
writer.flush()
mnist = input_data.read_data_sets('../Mnist_data/', one_hot=True)
with tf.Session() as sess:
sess.run(init)
total_batch = int(mnist.train.num_examples / batch_size)
for epoch in range(training_epochs):
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
_, Loss = sess.run([train, loss], feed_dict={X_input: batch_xs})
Loss = sess.run(loss, feed_dict={X_input: batch_xs})
if epoch % display_step == 0:
print('Epoch: %04d' % (epoch + 1), 'loss= ', '{:.9f}'.format(Loss))
writer.close()
print('訓練完畢!')
'''比較輸入和輸出的圖像'''
# 輸出圖像獲取
reconstructions = sess.run(X_decode, feed_dict={X_input: mnist.test.images[:example_to_show]})
# 畫布建立
f, a = plt.subplots(2, 10, figsize=(10, 2))
for i in range(example_to_show):
a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
a[1][i].imshow(np.reshape(reconstructions[i], (28, 28)))
f.show() # 渲染圖像
plt.draw() # 刷新圖像
# plt.waitforbuttonpress()
debug一上午的收獲:接受sess.run輸出的變量名不要和tensor節點的變量名重復,會出錯的... ...好低級的錯誤。mmdz
比較圖像一部分之前沒做過,介紹了matplotlib.pyplot的花式用法,
原來plt.subplots()是會返回 畫布句柄 & 子圖集合 句柄的,子圖集合句柄可以像數組一樣調用子圖
pyplot是有show()和draw()兩個方法的,show是展示出畫布,draw會刷新原圖,可以交互的修改畫布
waitforbuttonpress()監聽鍵盤按鍵如果用戶按的是鍵盤,返回True,如果是其他(如鼠標單擊),則返回False
另,發現用surface寫程序其實還挺帶感... ...
輸出圖像如下:

雙隱藏層版本
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
batch_size = 128 # batch容量
display_step = 1 # 展示間隔
learning_rate = 0.01 # 學習率
training_epochs = 20 # 訓練輪數,1輪等於n_samples/batch_size
example_to_show = 10 # 展示圖像數目
n_hidden1_units = 256 # 第一隱藏層
n_hidden2_units = 128 # 第二隱藏層
n_input_units = 784
n_output_units = n_input_units
def WeightsVariable(n_in, n_out, name_str):
return tf.Variable(tf.random_normal([n_in, n_out]), dtype=tf.float32, name=name_str)
def biasesVariable(n_out, name_str):
return tf.Variable(tf.random_normal([n_out]), dtype=tf.float32, name=name_str)
def encoder(x_origin, activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer1'):
Weights = WeightsVariable(n_input_units, n_hidden1_units, 'Weights')
biases = biasesVariable(n_hidden1_units, 'biases')
x_code1 = activate_func(tf.add(tf.matmul(x_origin, Weights), biases))
with tf.name_scope('Layer2'):
Weights = WeightsVariable(n_hidden1_units, n_hidden2_units, 'Weights')
biases = biasesVariable(n_hidden2_units, 'biases')
x_code2 = activate_func(tf.add(tf.matmul(x_code1, Weights), biases))
return x_code2
def decode(x_code, activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer1'):
Weights = WeightsVariable(n_hidden2_units, n_hidden1_units, 'Weights')
biases = biasesVariable(n_hidden1_units, 'biases')
x_decode1 = activate_func(tf.add(tf.matmul(x_code, Weights), biases))
with tf.name_scope('Layer2'):
Weights = WeightsVariable(n_hidden1_units, n_output_units, 'Weights')
biases = biasesVariable(n_output_units, 'biases')
x_decode2 = activate_func(tf.add(tf.matmul(x_decode1, Weights), biases))
return x_decode2
with tf.Graph().as_default():
with tf.name_scope('Input'):
X_input = tf.placeholder(tf.float32, [None, n_input_units])
with tf.name_scope('Encode'):
X_code = encoder(X_input)
with tf.name_scope('decode'):
X_decode = decode(X_code)
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.pow(X_input - X_decode, 2))
with tf.name_scope('train'):
Optimizer = tf.train.RMSPropOptimizer(learning_rate)
train = Optimizer.minimize(loss)
init = tf.global_variables_initializer()
# 因為使用了tf.Graph.as_default()上下文環境
# 所以下面的記錄必須放在上下文里面,否則記錄下來的圖是空的(get不到上面的default)
writer = tf.summary.FileWriter(logdir='logs', graph=tf.get_default_graph())
writer.flush()
mnist = input_data.read_data_sets('../Mnist_data/', one_hot=True)
with tf.Session() as sess:
sess.run(init)
total_batch = int(mnist.train.num_examples / batch_size)
for epoch in range(training_epochs):
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
_, Loss = sess.run([train, loss], feed_dict={X_input: batch_xs})
Loss = sess.run(loss, feed_dict={X_input: batch_xs})
if epoch % display_step == 0:
print('Epoch: %04d' % (epoch + 1), 'loss= ', '{:.9f}'.format(Loss))
writer.close()
print('訓練完畢!')
'''比較輸入和輸出的圖像'''
# 輸出圖像獲取
reconstructions = sess.run(X_decode, feed_dict={X_input: mnist.test.images[:example_to_show]})
# 畫布建立
f, a = plt.subplots(2, 10, figsize=(10, 2))
for i in range(example_to_show):
a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
a[1][i].imshow(np.reshape(reconstructions[i], (28, 28)))
f.show() # 渲染圖像
plt.draw() # 刷新圖像
# plt.waitforbuttonpress()
輸出圖像如下:

由於壓縮到128個節點損失信息過多,所以結果不如之前單層的好。
有意思的是我們把256的那層改成128(也就是雙128)后,結果反而比上面的要好:

但是仍然比不上單隱藏層,數據比較簡單時候復雜網絡效果可能不那么好(loss值我沒有截取,但實際上是這樣,雖然不同網絡loss直接比較沒什么意義),當然,也有可能是復雜網絡沒收斂的結果。
可視化雙隱藏層自編碼器
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
batch_size = 128 # batch容量
display_step = 1 # 展示間隔
learning_rate = 0.01 # 學習率
training_epochs = 20 # 訓練輪數,1輪等於n_samples/batch_size
example_to_show = 10 # 展示圖像數目
n_hidden1_units = 256 # 第一隱藏層
n_hidden2_units = 128 # 第二隱藏層
n_input_units = 784
n_output_units = n_input_units
def variable_summaries(var): #<---
"""
可視化變量全部相關參數
:param var:
:return:
"""
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.histogram('mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev) # 注意,這是標量
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var)
def WeightsVariable(n_in,n_out,name_str):
return tf.Variable(tf.random_normal([n_in,n_out]),dtype=tf.float32,name=name_str)
def biasesVariable(n_out,name_str):
return tf.Variable(tf.random_normal([n_out]),dtype=tf.float32,name=name_str)
def encoder(x_origin,activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer1'):
Weights = WeightsVariable(n_input_units,n_hidden1_units,'Weights')
biases = biasesVariable(n_hidden1_units,'biases')
x_code1 = activate_func(tf.add(tf.matmul(x_origin,Weights),biases))
variable_summaries(Weights) #<---
variable_summaries(biases) #<---
with tf.name_scope('Layer2'):
Weights = WeightsVariable(n_hidden1_units,n_hidden2_units,'Weights')
biases = biasesVariable(n_hidden2_units,'biases')
x_code2 = activate_func(tf.add(tf.matmul(x_code1,Weights),biases))
variable_summaries(Weights) #<---
variable_summaries(biases) #<---
return x_code2
def decode(x_code,activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer1'):
Weights = WeightsVariable(n_hidden2_units,n_hidden1_units,'Weights')
biases = biasesVariable(n_hidden1_units,'biases')
x_decode1 = activate_func(tf.add(tf.matmul(x_code,Weights),biases))
variable_summaries(Weights) #<---
variable_summaries(biases) #<---
with tf.name_scope('Layer2'):
Weights = WeightsVariable(n_hidden1_units,n_output_units,'Weights')
biases = biasesVariable(n_output_units,'biases')
x_decode2 = activate_func(tf.add(tf.matmul(x_decode1,Weights),biases))
variable_summaries(Weights) #<---
variable_summaries(biases) #<---
return x_decode2
with tf.Graph().as_default():
with tf.name_scope('Input'):
X_input = tf.placeholder(tf.float32,[None,n_input_units])
with tf.name_scope('Encode'):
X_code = encoder(X_input)
with tf.name_scope('decode'):
X_decode = decode(X_code)
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.pow(X_input - X_decode,2))
with tf.name_scope('train'):
Optimizer = tf.train.RMSPropOptimizer(learning_rate)
train = Optimizer.minimize(loss)
# 標量匯總
with tf.name_scope('LossSummary'):
tf.summary.scalar('loss',loss)
tf.summary.scalar('learning_rate',learning_rate)
# 圖像展示
with tf.name_scope('ImageSummary'):
image_original = tf.reshape(X_input,[-1, 28, 28, 1])
image_reconstruction = tf.reshape(X_decode, [-1, 28, 28, 1])
tf.summary.image('image_original', image_original, 9)
tf.summary.image('image_recinstruction', image_reconstruction, 9)
# 匯總
merged_summary = tf.summary.merge_all()
init = tf.global_variables_initializer()
writer = tf.summary.FileWriter(logdir='logs', graph=tf.get_default_graph())
writer.flush()
mnist = input_data.read_data_sets('../Mnist_data/', one_hot=True)
with tf.Session() as sess:
sess.run(init)
total_batch = int(mnist.train.num_examples / batch_size)
for epoch in range(training_epochs):
for i in range(total_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
_,Loss = sess.run([train,loss],feed_dict={X_input: batch_xs})
Loss = sess.run(loss,feed_dict={X_input: batch_xs})
if epoch % display_step == 0:
print('Epoch: %04d' % (epoch + 1),'loss= ','{:.9f}'.format(Loss))
summary_str = sess.run(merged_summary,feed_dict={X_input: batch_xs}) #<---
writer.add_summary(summary_str,epoch) #<---
writer.flush() #<---
writer.close()
print('訓練完畢!')
幾個有意思的發現,
使用之前的圖像輸出方式時,win下matplotlib.pyplot的繪畫框會立即退出,所以要使用 plt.waitforbuttonpress() 命令。
win下使用plt繪畫色彩和linux不一樣,效果如下:

輸出圖如下:

對比圖像如下(截自tensorboard):

