1、Hive不支持等值連接
•SQL中對兩表內聯可以寫成:
•select * from dual a,dual b where a.key = b.key;
•Hive中應為
•select * from dual a join dual b on a.key = b.key;
而不是傳統的格式:
SELECT t1.a1 as c1, t2.b1 as c2FROM t1, t2
WHERE t1.a2 = t2.b2
2、分號字符
•分號是SQL語句結束標記,在HiveQL中也是,但是在HiveQL中,對分號的識別沒有那么智慧,例如:
•select concat(key,concat(';',key)) from dual;
•但HiveQL在解析語句時提示:
FAILED: Parse Error: line 0:-1 mismatched input '<EOF>' expecting ) in function specification
•解決的辦法是,使用分號的八進制的ASCII碼進行轉義,那么上述語句應寫成:
•select concat(key,concat('\073',key)) from dual;
3、IS [NOT] NULL
•SQL中null代表空值, 值得警惕的是, 在HiveQL中String類型的字段若是空(empty)字符串, 即長度為0, 那么對它進行IS NULL的判斷結果是False.
4、Hive不支持將數據插入現有的表或分區中,
僅支持覆蓋重寫整個表,示例如下:
INSERT OVERWRITE TABLE t1
SELECT * FROM t2;
5、hive不支持INSERT INTO 表 Values(), UPDATE, DELETE操作
這樣的話,就不要很復雜的鎖機制來讀寫數據。
INSERT INTO syntax is only available starting in version 0.8。INSERT INTO就是在表或分區中追加數據。
6、hive支持嵌入mapreduce程序,來處理復雜的邏輯
如:
FROM (
MAP doctext USING 'python wc_mapper.py' AS (word, cnt)
FROM docs
CLUSTER BY word
) a
REDUCE word, cnt USING 'python wc_reduce.py';
--doctext: 是輸入
--word, cnt: 是map程序的輸出
--CLUSTER BY: 將wordhash后,又作為reduce程序的輸入
並且map程序、reduce程序可以單獨使用,如:
FROM (
FROM session_table
SELECT sessionid, tstamp, data
DISTRIBUTE BY sessionid SORT BY tstamp
) a
REDUCE sessionid, tstamp, data USING 'session_reducer.sh';
-DISTRIBUTE BY: 用於給reduce程序分配行數據
7、hive支持將轉換后的數據直接寫入不同的表,還能寫入分區、hdfs和本地目錄
這樣能免除多次掃描輸入表的開銷。
FROM t1
INSERT OVERWRITE TABLE t2
SELECT t3.c2, count(1)
FROM t3
WHERE t3.c1 <= 20
GROUP BY t3.c2
INSERT OVERWRITE DIRECTORY '/output_dir'
SELECT t3.c2, avg(t3.c1)
FROM t3
WHERE t3.c1 > 20 AND t3.c1 <= 30
GROUP BY t3.c2
INSERT OVERWRITE LOCAL DIRECTORY '/home/dir'
SELECT t3.c2, sum(t3.c1)
FROM t3
WHERE t3.c1 > 30
GROUP BY t3.c2;
示例示例

實際實例 創建一個表 CREATE TABLE u_data ( userid INT, movieid INT, rating INT, unixtime STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY '/t' STORED AS TEXTFILE; 下載示例數據文件,並解壓縮 wget http://www.grouplens.org/system/files/ml-data.tar__0.gz tar xvzf ml-data.tar__0.gz 加載數據到表中: LOAD DATA LOCAL INPATH 'ml-data/u.data' OVERWRITE INTO TABLE u_data; 統計數據總量: SELECT COUNT(1) FROM u_data; 現在做一些復雜的數據分析: 創建一個 weekday_mapper.py: 文件,作為數據按周進行分割 import sys import datetime for line in sys.stdin: line = line.strip() userid, movieid, rating, unixtime = line.split('/t') 生成數據的周信息 weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday() print '/t'.join([userid, movieid, rating, str(weekday)]) 使用映射腳本 //創建表,按分割符分割行中的字段值 CREATE TABLE u_data_new ( userid INT, movieid INT, rating INT, weekday INT) ROW FORMAT DELIMITED FIELDS TERMINATED BY '/t'; //將python文件加載到系統 add FILE weekday_mapper.py; 將數據按周進行分割 INSERT OVERWRITE TABLE u_data_new SELECT TRANSFORM (userid, movieid, rating, unixtime) USING 'python weekday_mapper.py' AS (userid, movieid, rating, weekday) FROM u_data; SELECT weekday, COUNT(1) FROM u_data_new GROUP BY weekday; 處理Apache Weblog 數據 將WEB日志先用正則表達式進行組合,再按需要的條件進行組合輸入到表中 add jar ../build/contrib/hive_contrib.jar; CREATE TABLE apachelog ( host STRING, identity STRING, user STRING, time STRING, request STRING, status STRING, size STRING, referer STRING, agent STRING) ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe' WITH SERDEPROPERTIES ( "input.regex" = "([^ ]*) ([^ ]*) ([^ ]*) (-|//[[^//]]*//]) ([^ /"]*|/"[^/"]*/") (-|[0-9]*) (-|[0-9]*)(?: ([^ /"]*|/"[^/"]*/") ([^ /"]*|/"[^/"]*/"))?", "output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s %7$s %8$s %9$s" ) STORED AS TEXTFILE;