朴素貝葉斯文本分類-在《紅樓夢》作者鑒別的應用上(python實現)


朴素貝葉斯算法簡單、高效。接下來我們來介紹其如何應用在《紅樓夢》作者的鑒別上。

第一步,當然是先得有文本數據,我在網上隨便下載了一個txt(當時急着交初稿。。。)。分類肯定是要一個回合一個回合的分,所以我們拿到文本數據后,先進行回合划分。然后就是去標點符號、分詞,做詞頻統計。

  1 # -*- coding: utf-8 -*-
  2 import re
  3 import jieba
  4 import string
  5 import collections as coll
  6 jieba.load_userdict('E:\\forpython\\紅樓夢詞匯大全.txt') # 導入搜狗的紅樓夢詞庫
  7                      
  8                    
  9 class textprocesser:
 10     def __init__(self):
 11         pass
 12         
 13     # 將小說分成120個章節並單獨保存到txt文件中   
 14     def divide_into_chapter(self):
 15         red=open('E:\\forpython\\紅樓夢.txt',encoding='utf-8')
 16         each_line = red.readline()
 17         chapter_count = 0
 18         chapter_text = ''
 19         complied_rule = re.compile('第[一二三四五六七八九十百]+回  ')
 20     
 21         while each_line:
 22             if re.findall(complied_rule,each_line):
 23                 file_name = 'chap'+str(chapter_count)
 24                 file_out = open('E:\\forpython\\chapters\\'+file_name+'.txt','a',encoding = 'utf-8')
 25                 file_out.write(chapter_text)
 26                 chapter_count += 1
 27                 file_out.close()
 28                 chapter_text = each_line
 29             else:
 30                 chapter_text += each_line
 31         
 32             each_line = red.readline()
 33     
 34         red.close()
 35     
 36 
 37     # 對單個章節的分詞
 38     def segmentation(self,text,text_count):
 39         file_name = 'chap'+str(text_count)+'-words.txt'
 40         file_out = open('E:\\forpython\\chapter2words\\'+file_name,'a',encoding='utf-8')
 41         delset = string.punctuation
 42     
 43         line=text.readline()
 44     
 45         while line:
 46             seg_list = jieba.cut(line,cut_all = False)
 47             words = " ".join(seg_list)
 48             words = words.translate(delset) # 去除英文標點
 49             words = "".join(words.split('\n')) # 去除回車符
 50             words = self.delCNf(words) # 去除中文標點
 51             words = re.sub('[ \u3000]+',' ',words) # 去除多余的空格
 52             file_out.write(words)
 53             line = text.readline()
 54     
 55         file_out.close()
 56         text.close()
 57 
 58 
 59     # 對所有章節分詞
 60     def do_segmentation(self):
 61         for loop in range(1,121):
 62             file_name = 'chap'+str(loop)+'.txt'
 63             file_in = open('E:\\forpython\\chapters\\'+file_name,'r',encoding = 'utf-8')
 64         
 65             self.segmentation(file_in,loop)
 66         
 67             file_in.close()
 68                    
 69     # 去除中文字符函數
 70     def delCNf(self,line):
 71         regex = re.compile('[^\u4e00-\u9fa5a-zA-Z0-9\s]')
 72         return regex.sub('', line)
 73     
 74     
 75     # 去除標點后進行詞頻統計
 76     def count_words(self,text,textID):
 77         line = str(text)
 78         words = line.split()
 79         words_dict = coll.Counter(words) # 生成詞頻字典
 80         
 81         file_name = 'chap'+str(textID)+'-wordcount.txt'
 82         file_out = open('E:\\forpython\\chapter-wordcount\\'+file_name,'a',encoding = 'utf-8')
 83         
 84         # 排序后寫入文本
 85         sorted_result = sorted(words_dict.items(),key = lambda d:d[1],reverse = True)
 86         for one in sorted_result:
 87             line = "".join(one[0] + '\t' + str(one[1]) + '\n')
 88             file_out.write(line)
 89         
 90         file_out.close()
 91 
 92 
 93 
 94     def do_wordcount(self):
 95         for loop in range(1,121):
 96             file_name = 'chap'+str(loop)+'-words.txt'
 97             file_in = open('E:\\forpython\\chapter2words\\'+file_name,'r',encoding = 'utf-8')
 98             line = file_in.readline()
 99             
100             text = ''
101             while line:
102                 text += line
103                 line = file_in.readline()
104             self.count_words(text,loop)
105             file_in.close()
106     
107     
108 if __name__ == '__main__':
109     processer = textprocesser()
110     processer.divide_into_chapter()
111     processer.do_segmentation()
112     processer.do_wordcount()

文本分類我個人感覺最重要的是選取特征向量,我查閱了相關文獻,決定選取五十多個文言虛詞和二十多個在120個回合中均出現過的詞匯(文言虛詞的使用不受情節影響,只與作者寫作習慣有關)。下面是生成

特征向量的代碼

  1 # -*- coding: utf-8 -*-
  2 import jieba
  3 import re
  4 import string
  5 import collections as coll
  6 jieba.load_userdict('E:\\forpython\\紅樓夢詞匯大全.txt') # 導入搜狗的紅樓夢詞庫
  7 
  8 class featureVector:
  9     def __init__(self):
 10         pass
 11     
 12      # 去除中文字符函數
 13     def delCNf(self,line):
 14         regex = re.compile('[^\u4e00-\u9fa5a-zA-Z0-9\s]')
 15         return regex.sub('', line)
 16    
 17     
 18     # 對整篇文章分詞
 19     def cut_words(self):
 20         red = open('E:\\forpython\\紅樓夢.txt','r',encoding = 'utf-8')
 21         file_out = open('E:\\forpython\\紅樓夢-詞.txt','a',encoding = 'utf-8')
 22         delset = string.punctuation
 23         
 24         line = red.readline()
 25         
 26         while line:
 27             seg_list = jieba.cut(line,cut_all = False)
 28             words = ' '.join(seg_list)
 29             words = words.translate(delset) # 去除英文標點
 30             words = "".join(words.split('\n')) # 去除回車符
 31             words = self.delCNf(words) # 去除中文標點
 32             words = re.sub('[ \u3000]+',' ',words) # 去除多余的空格
 33             file_out.write(words)
 34             line = red.readline()
 35             
 36         file_out.close()
 37         red.close()
 38         
 39     # 統計詞頻   
 40     def count_words(self):
 41         data = open('E:\\forpython\\紅樓夢-詞.txt','r',encoding = 'utf-8')
 42         line = data.read()
 43         data.close()
 44         words = line.split()
 45         words_dict = coll.Counter(words) # 生成詞頻字典
 46         
 47         file_out = open('E:\\forpython\\紅樓夢-詞頻.txt','a',encoding = 'utf-8')
 48         
 49         # 排序后寫入文本
 50         sorted_result = sorted(words_dict.items(),key = lambda d:d[1],reverse = True)
 51         for one in sorted_result:
 52             line = "".join(one[0] + '\t' + str(one[1]) + '\n')
 53             file_out.write(line)
 54         
 55         file_out.close()
 56         
 57     
 58         
 59     def get_featureVector(self):
 60         # 將分詞后的120個章節文本放入一個列表中
 61         everychapter = []
 62         for loop in range(1,121):
 63             data = open('E:\\forpython\\chapter2words\\chap'+str(loop)+'-words.txt','r',encoding = 'utf-8')
 64             each_chapter = data.read()
 65             everychapter.append(each_chapter)
 66             data.close()
 67         
 68         temp = open('E:\\forpython\\紅樓夢-詞.txt','r',encoding = 'utf-8')
 69         word_beg = temp.read()
 70         word_beg = word_beg.split(' ')
 71         temp.close()
 72         
 73         # 找出每一個回合都出現的詞
 74         cleanwords = []
 75         for loop in range(1,121):
 76             data = open('E:\\forpython\\chapter2words\\chap'+str(loop)+'-words.txt','r',encoding = 'utf-8')
 77             words_list = list(set(data.read().split()))
 78             data.close()
 79             cleanwords.extend(words_list)
 80     
 81         cleanwords_dict = coll.Counter(cleanwords)
 82 
 83         cleanwords_dict = {k:v for k, v in cleanwords_dict.items() if v >= 120}
 84         
 85         cleanwords_f = list(cleanwords_dict.keys())
 86         
 87         xuci = open('E:\\forpython\\文言虛詞.txt','r',encoding = 'utf-8')
 88         xuci_list = xuci.read().split()
 89         xuci.close()
 90         featureVector = list(set(xuci_list + cleanwords_f))
 91         featureVector.remove('\ufeff')
 92                 
 93         # 寫入文本
 94         file_out = open('E:\\forpython\\紅樓夢-特征向量.txt','a',encoding = 'utf-8')
 95         for one in featureVector:
 96             line = "".join(one+ '\n')
 97             file_out.write(line)
 98         
 99         file_out.close()
100         return(featureVector)
101         
102 if __name__ == '__main__':
103     vectorbuilter = featureVector()
104     vectorbuilter.cut_words()
105     vectorbuilter.count_words()
106     vectorbuilter.get_featureVector()

朴素貝葉斯文本分類就是用特征向量的詞頻作為每個回合的代表(偷個懶,直接截圖答辯的ppt)

用特征向量把所有一百二十個回合向量化后,你會得到120×70的一個數組。接下來就簡單了。直接挑選訓練集,在這我是在前80回中挑選了20至29回標記為第一類(用數字1表示),並將其作為第一類的訓練集;在后80回合中挑選了110至119回標記為第二類(用數字2表示),並將其作為第二類的訓練集。

 1 # -*- coding: utf-8 -*-
 2 
 3 import numpy as np
 4 from sklearn.naive_bayes import MultinomialNB
 5 import get_trainset as ts
 6 x_train = ts.get_train_set().get_all_vector()
 7 
 8 
 9 
10 class result:
11     def __inti__(self):
12         pass
13     
14     def have_Xtrainset(self):
15         Xtrainset = x_train
16         Xtrainset = np.vstack((Xtrainset[19:29],Xtrainset[109:119]))
17         return(Xtrainset)   
18     
19     def as_num(self,x):
20         y='{:.10f}'.format(x)
21         return(y)
22     
23     def built_model(self):
24         x_trainset = self.have_Xtrainset()
25         y_classset = np.repeat(np.array([1,2]),[10,10])
26         
27         NBclf = MultinomialNB()
28         NBclf.fit(x_trainset,y_classset) # 建立模型
29         
30         all_vector = x_train
31         
32         result = NBclf.predict(all_vector)
33         print(''+str(len(result[0:80]))+'回分類結果為:')
34         print(result[0:80])
35         print(''+str(len(result[80:121]))+'回分類結果為:')
36         print(result[80:121])
37        
38         diff_chapter = [80,81,83,84,87,88,90,100]
39         for i in diff_chapter:
40             tempr = NBclf.predict_proba(all_vector[i])
41             print(''+str(i+1)+'回的分類概率為: ')
42             print(str(self.as_num(tempr[0][0]))+' '+str(self.as_num(tempr[0][1])))
43 
44         
45 if __name__ == '__main__':
46     res = result()
47     res.built_model()

上面是直接調用了skit-learn的MultinomialNB函數,詳細情況我在前一篇中講過。

得到分類結果:

 

從最終的分類結果來看,在第82回合左右是有一個比較明顯的分界點,這樣看來前80回合與后40回合在寫作風格上還是有顯著的差異的,這個結果和紅樓夢學術界的年的推斷比較一致。

至於為何在后40回中有8個回合被分到1類中,這8個回合分別是81回、82回、84回、85回、88回、89回、91回還有101回,都是在第80回合附近,這個差異有可能是由於上下文的銜接所導致的,因為本文所使用的《紅樓夢》文本是從網上下載得到的,,版本不明,所以也有可能是由於紅樓夢的版本所導致的。

代碼肯定還有很多可以優化的地方,在這里獻丑了。。。。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM