OpenCV探索之路(十五):角點檢測


角點檢測是計算機視覺系統中用來獲取圖像特征的一種方法。我們都常說,這幅圖像很有特點,但是一問他到底有哪些特點,或者這幅圖有哪些特征可以讓你一下子就識別出該物體,你可能就說不出來了。其實說圖像的特征,你可以嘗試說一下這幅圖有幾個矩形啊幾個圓形啊,有幾條直線啊,當然啦,你也可以說一下有幾個角點。

什么是角點?

角點通常被定義為兩條邊的交點。比如,三角形有三個角,矩形有四個角,這些就是角點,也是他們叫做矩形、三角形的特征,我們看到一些幾何圖形具有三個角,那么我們便可以脫口而出說這是一個三角形。

上面所說的是嚴格意義上的角點,但是從廣義來說,角點指的是擁有特定特征的圖像點,這些特征點在圖像中有具體的坐標,並具有某些數學特征(比如局部最大或最小的灰度)。

圖像特征類型可以被分為三種:

  • 邊緣
  • 角點(感興趣關鍵點)
  • 斑點(感興趣區域)

角點是個很特殊的存在。如果某一點在任意方向的一個微小的變動都會引起灰度很大的變化,那么我們就可以把該點看做是角點。

Harris 角點檢測

Harris角點檢測是一種直接基於灰度圖的角點提取算法,穩定性高,尤其對L型角點(也就是直角)檢測精度高。缺點也是明顯的,就是運算速度慢。

OpenCV使用的相應函數是

void cornerHarris( InputArray src, OutputArray dst, int blockSize,int ksize,
                    double k, int borderType = BORDER_DEFAULT );

下面給出相應的檢測代碼。

#include <opencv2/opencv.hpp>  
#include "opencv2/highgui/highgui.hpp"  
#include "opencv2/imgproc/imgproc.hpp"  

using namespace cv;
using namespace std;
 

Mat g_srcImage, g_srcImage1, g_grayImage;
int thresh = 30; //當前閾值  
int max_thresh = 175; //最大閾值  

void on_CornerHarris(int, void*);//回調函數  

int main(int argc, char** argv)
{
	g_srcImage = imread("lol19.jpg", 1);
	if (!g_srcImage.data)
	{
		printf("讀取圖片錯誤! \n");
		return -1;
	}
	imshow("原始圖", g_srcImage);
	g_srcImage1 = g_srcImage.clone();

	//存留一張灰度圖  
	cvtColor(g_srcImage1, g_grayImage, CV_BGR2GRAY);

	//創建窗口和滾動條  
	namedWindow("角點檢測", CV_WINDOW_AUTOSIZE);
	createTrackbar("閾值: ", "角點檢測", &thresh, max_thresh, on_CornerHarris);

	//調用一次回調函數,進行初始化  
	on_CornerHarris(0, 0);

	waitKey(0);
	return(0);
}


void on_CornerHarris(int, void*)
{
	Mat dstImage;//目標圖  
	Mat normImage;//歸一化后的圖  
	Mat scaledImage;//線性變換后的八位無符號整型的圖  

	//置零當前需要顯示的兩幅圖,即清除上一次調用此函數時他們的值  
	dstImage = Mat::zeros(g_srcImage.size(), CV_32FC1);
	g_srcImage1 = g_srcImage.clone();

	//進行角點檢測  
	//第三個參數表示鄰域大小,第四個參數表示Sobel算子孔徑大小,第五個參數表示Harris參數
	cornerHarris(g_grayImage, dstImage, 2, 3, 0.04, BORDER_DEFAULT);

	// 歸一化與轉換  
	normalize(dstImage, normImage, 0, 255, NORM_MINMAX, CV_32FC1, Mat());
	convertScaleAbs(normImage, scaledImage);//將歸一化后的圖線性變換成8位無符號整型   

	// 將檢測到的,且符合閾值條件的角點繪制出來  
	for (int j = 0; j < normImage.rows; j++)
	{
		for (int i = 0; i < normImage.cols; i++)
		{
			//Mat::at<float>(j,i)獲取像素值,並與閾值比較
			if ((int)normImage.at<float>(j, i) > thresh + 80)
			{
				circle(g_srcImage1, Point(i, j), 5, Scalar(10, 10, 255), 2, 8, 0);
				circle(scaledImage, Point(i, j), 5, Scalar(0, 10, 255), 2, 8, 0);
			}
		}
	}
	
	imshow("角點檢測", g_srcImage1);
	imshow("角點檢測2", scaledImage);

}

先看看原始圖

開始檢測,我把閾值設為30,檢測到角點還挺多的。

我把閾值進一步提高,角點變少了。認真觀察一下,是不是檢測到的點都是一些亮度明顯變化的臨界點?比如由黑變白的邊界點。

Shi-Tomasi角點檢測

除了上述的Harris角點檢測方法,我們還可以采用Shi-Tomasi方法進行角點檢測。Shi-Tomsi算法是Harris算法的加強版,性能當然也有相應的提高。

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

Mat src, src_gray;

int maxCorners = 23;
int maxTrackbar = 100;

RNG rng(12345);  //RNG:random number generator,隨機數產生器
char* source_window = "Image";

void goodFeaturesToTrack_Demo(int, void*);

int main()
{
	//轉化為灰度圖
	src = imread("lol19.jpg", 1);
	cvtColor(src, src_gray, CV_BGR2GRAY);

	namedWindow(source_window, CV_WINDOW_AUTOSIZE);

	//創建trackbar
	createTrackbar("MaxCorners:", source_window, &maxCorners, maxTrackbar, goodFeaturesToTrack_Demo);

	imshow(source_window, src);

	goodFeaturesToTrack_Demo(0, 0);

	waitKey(0);
	return(0);
}

void goodFeaturesToTrack_Demo(int, void*)
{
	if (maxCorners < 1) { maxCorners = 1; }

	//初始化 Shi-Tomasi algorithm的一些參數
	vector<Point2f> corners;
	double qualityLevel = 0.01;
	double minDistance = 10;
	int blockSize = 3;
	bool useHarrisDetector = false;
	double k = 0.04;

	//給原圖做一次備份
	Mat copy;
	copy = src.clone();

	// 角點檢測
	goodFeaturesToTrack(src_gray,corners,maxCorners,qualityLevel,minDistance,Mat(),blockSize,useHarrisDetector,k);

	//畫出檢測到的角點
	cout << "** Number of corners detected: " << corners.size() << endl;
	int r = 4;
	for (int i = 0; i < corners.size(); i++)
	{
		circle(copy, corners[i], r, Scalar(rng.uniform(0, 255), rng.uniform(0, 255),
			rng.uniform(0, 255)), -1, 8, 0);
	}

	namedWindow(source_window, CV_WINDOW_AUTOSIZE);
	imshow(source_window, copy);
}


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM