B+Tree原理及mysql的索引分析


一、索引的本質

     MySQL官方對索引的定義為:索引(Index)是幫助MySQL高效獲取數據的數據結構。提取句子主干,就可以得到索引的本質:索引是數據結構。

     我們知道,數據庫查詢是數據庫的最主要功能之一。我們都希望查詢數據的速度能盡可能的快,因此數據庫系統的設計者會從查詢算法的角度進行優化。最基本的查詢算法當然是順序查找(linear search),這種復雜度為O(n)的算法在數據量很大時顯然是糟糕的,好在計算機科學的發展提供了很多更優秀的查找算法,例如二分查找(binary search)、二叉樹查找(binary tree search)等。

     如果稍微分析一下會發現,每種查找算法都只能應用於特定的數據結構之上,例如二分查找要求被檢索數據有序,而二叉樹查找只能應用於二叉查找樹上,但是數據本身的組織結構不可能完全滿足各種數據結構(例如,理論上不可能同時將兩列都按順序進行組織),所以,在數據之外,數據庫系統還維護着滿足特定查找算法的數據結構,這些數據結構以某種方式引用(指向)數據,這樣就可以在這些數據結構上實現高級查找算法。這種數據結構,就是索引。

二、B-Tree(平衡多路查找樹)

B-Tree是為磁盤等外存儲設備設計的一種平衡查找樹。因此在講B-Tree之前先了解下磁盤的相關知識。

系統從磁盤讀取數據到內存時是以磁盤塊(block)為基本單位的,位於同一個磁盤塊中的數據會被一次性讀取出來,而不是需要什么取什么。

InnoDB存儲引擎中有頁(Page)的概念,頁是其磁盤管理的最小單位。InnoDB存儲引擎中默認每個頁的大小為16KB,可通過參數innodb_page_size將頁的大小設置為4K、8K、16K,在MySQL中可通過如下命令查看頁的大小:

mysql> show variables like 'innodb_page_size';

而系統一個磁盤塊的存儲空間往往沒有這么大,因此InnoDB每次申請磁盤空間時都會是若干地址連續磁盤塊來達到頁的大小16KB。InnoDB在把磁盤數據讀入到磁盤時會以頁為基本單位,在查詢數據時如果一個頁中的每條數據都能有助於定位數據記錄的位置,這將會減少磁盤I/O次數,提高查詢效率。

B-Tree結構的數據可以讓系統高效的找到數據所在的磁盤塊。為了描述B-Tree,首先定義一條記錄為一個二元組[key, data] ,key為記錄的鍵值,對應表中的主鍵值,data為一行記錄中除主鍵外的數據。對於不同的記錄,key值互不相同。

一棵m階的B-Tree有如下特性:
1. 每個節點最多有m個孩子。
2. 除了根節點和葉子節點外,其它每個節點至少有Ceil(m/2)個孩子。
3. 若根節點不是葉子節點,則至少有2個孩子。
4. 所有葉子節點都在同一層,且不包含其它關鍵字信息。
5. 每個非終端節點包含n個關鍵字信息(P0,P1,…Pn, k1,…kn)
6. 關鍵字的個數n滿足:ceil(m/2)-1 <= n <= m-1
7. ki(i=1,…n)為關鍵字,且關鍵字升序排序。
8. Pi(i=1,…n)為指向子樹根節點的指針。P(i-1)指向的子樹的所有節點關鍵字均小於ki,但都大於k(i-1)。

B-Tree中的每個節點根據實際情況可以包含大量的關鍵字信息和分支,如下圖所示為一個3階的B-Tree:

每個節點占用一個盤塊的磁盤空間,一個節點上有兩個升序排序的關鍵字和三個指向子樹根節點的指針,指針存儲的是子節點所在磁盤塊的地址。兩個關鍵詞划分成的三個范圍域對應三個指針指向的子樹的數據的范圍域。以根節點為例,關鍵字為17和35,P1指針指向的子樹的數據范圍為小於17,P2指針指向的子樹的數據范圍為17~35,P3指針指向的子樹的數據范圍為大於35。

模擬查找關鍵字29的過程:

  1. 根據根節點找到磁盤塊1,讀入內存。【磁盤I/O操作第1次】
  2. 比較關鍵字29在區間(17,35),找到磁盤塊1的指針P2。
  3. 根據P2指針找到磁盤塊3,讀入內存。【磁盤I/O操作第2次】
  4. 比較關鍵字29在區間(26,30),找到磁盤塊3的指針P2。
  5. 根據P2指針找到磁盤塊8,讀入內存。【磁盤I/O操作第3次】
  6. 在磁盤塊8中的關鍵字列表中找到關鍵字29。

分析上面過程,發現需要3次磁盤I/O操作,和3次內存查找操作。由於內存中的關鍵字是一個有序表結構,可以利用二分法查找提高效率。而3次磁盤I/O操作是影響整個B-Tree查找效率的決定因素。B-Tree相對於AVLTree縮減了節點個數,使每次磁盤I/O取到內存的數據都發揮了作用,從而提高了查詢效率。

三、B+Tree

B+Tree是在B-Tree基礎上的一種優化,使其更適合實現外存儲索引結構,InnoDB存儲引擎就是用B+Tree實現其索引結構。

從上一節中的B-Tree結構圖中可以看到每個節點中不僅包含數據的key值,還有data值。而每一個頁的存儲空間是有限的,如果data數據較大時將會導致每個節點(即一個頁)能存儲的key的數量很小,當存儲的數據量很大時同樣會導致B-Tree的深度較大,增大查詢時的磁盤I/O次數,進而影響查詢效率。在B+Tree中,所有數據記錄節點都是按照鍵值大小順序存放在同一層的葉子節點上,而非葉子節點上只存儲key值信息,這樣可以大大加大每個節點存儲的key值數量,降低B+Tree的高度。

B+Tree相對於B-Tree有幾點不同:

  1. 非葉子節點只存儲鍵值信息。
  2. 所有葉子節點之間都有一個鏈指針。
  3. 數據記錄都存放在葉子節點中。

將上一節中的B-Tree優化,由於B+Tree的非葉子節點只存儲鍵值信息,假設每個磁盤塊能存儲4個鍵值及指針信息,則變成B+Tree后其結構如下圖所示:

通常在B+Tree上有兩個頭指針,一個指向根節點,另一個指向關鍵字最小的葉子節點,而且所有葉子節點(即數據節點)之間是一種鏈式環結構。因此可以對B+Tree進行兩種查找運算:一種是對於主鍵的范圍查找和分頁查找,另一種是從根節點開始,進行隨機查找。

四、為什么使用B-Tree(B+Tree)

      上文說過,紅黑樹等數據結構也可以用來實現索引,但是文件系統及數據庫系統普遍采用B-/+Tree作為索引結構,這一節將結合計算機組成原理相關知識討論B-/+Tree作為索引的理論基礎。

      一般來說,索引本身也很大,不可能全部存儲在內存中,因此索引往往以索引文件的形式存儲的磁盤上。這樣的話,索引查找過程中就要產生磁盤I/O消耗,相對於內存存取,I/O存取的消耗要高幾個數量級,所以評價一個數據結構作為索引的優劣最重要的指標就是在查找過程中磁盤I/O操作次數的漸進復雜度。換句話說,索引的結構組織要盡量減少查找過程中磁盤I/O的存取次數。下面先介紹內存和磁盤存取原理,然后再結合這些原理分析B-/+Tree作為索引的效率。

主存存取原理

      目前計算機使用的主存基本都是隨機讀寫存儲器(RAM),現代RAM的結構和存取原理比較復雜,這里本文拋卻具體差別,抽象出一個十分簡單的存取模型來說明RAM的工作原理。

      從抽象角度看,主存是一系列的存儲單元組成的矩陣,每個存儲單元存儲固定大小的數據。每個存儲單元有唯一的地址,現代主存的編址規則比較復雜,這里將其簡化成一個二維地址:通過一個行地址和一個列地址可以唯一定位到一個存儲單元。圖5展示了一個4 x 4的主存模型。

主存的存取過程如下:

      當系統需要讀取主存時,則將地址信號放到地址總線上傳給主存,主存讀到地址信號后,解析信號並定位到指定存儲單元,然后將此存儲單元數據放到數據總線上,供其它部件讀取。

      寫主存的過程類似,系統將要寫入單元地址和數據分別放在地址總線和數據總線上,主存讀取兩個總線的內容,做相應的寫操作。

      這里可以看出,主存存取的時間僅與存取次數呈線性關系,因為不存在機械操作,兩次存取的數據的“距離”不會對時間有任何影響,例如,先取A0再取A1和先取A0再取D3的時間消耗是一樣的。

磁盤存取原理

      上面說過,索引一般以文件形式存儲在磁盤上,索引檢索需要磁盤I/O操作。與主存不同,磁盤I/O存在機械運動耗費,因此磁盤I/O的時間消耗是巨大的。

      下圖是磁盤的整體結構示意圖。

      一個磁盤由大小相同且同軸的圓形盤片組成,磁盤可以轉動(各個磁盤必須同步轉動)。在磁盤的一側有磁頭支架,磁頭支架固定了一組磁頭,每個磁頭負責存取一個磁盤的內容。磁頭不能轉動,但是可以沿磁盤半徑方向運動(實際是斜切向運動),每個磁頭同一時刻也必須是同軸的,即從正上方向下看,所有磁頭任何時候都是重疊的(不過目前已經有多磁頭獨立技術,可不受此限制)。

      下圖是磁盤結構的示意圖。

      盤片被划分成一系列同心環,圓心是盤片中心,每個同心環叫做一個磁道,所有半徑相同的磁道組成一個柱面。磁道被沿半徑線划分成一個個小的段,每個段叫做一個扇區,每個扇區是磁盤的最小存儲單元。為了簡單起見,我們下面假設磁盤只有一個盤片和一個磁頭。

      當需要從磁盤讀取數據時,系統會將數據邏輯地址傳給磁盤,磁盤的控制電路按照尋址邏輯將邏輯地址翻譯成物理地址,即確定要讀的數據在哪個磁道,哪個扇區。為了讀取這個扇區的數據,需要將磁頭放到這個扇區上方,為了實現這一點,磁頭需要移動對准相應磁道,這個過程叫做尋道,所耗費時間叫做尋道時間,然后磁盤旋轉將目標扇區旋轉到磁頭下,這個過程耗費的時間叫做旋轉時間。

局部性原理與磁盤預讀

      由於存儲介質的特性,磁盤本身存取就比主存慢很多,再加上機械運動耗費,磁盤的存取速度往往是主存的幾百分分之一,因此為了提高效率,要盡量減少磁盤I/O。為了達到這個目的,磁盤往往不是嚴格按需讀取,而是每次都會預讀,即使只需要一個字節,磁盤也會從這個位置開始,順序向后讀取一定長度的數據放入內存。這樣做的理論依據是計算機科學中著名的局部性原理:

      當一個數據被用到時,其附近的數據也通常會馬上被使用。

      程序運行期間所需要的數據通常比較集中。

      由於磁盤順序讀取的效率很高(不需要尋道時間,只需很少的旋轉時間),因此對於具有局部性的程序來說,預讀可以提高I/O效率。

      預讀的長度一般為頁(page)的整倍數。頁是計算機管理存儲器的邏輯塊,硬件及操作系統往往將主存和磁盤存儲區分割為連續的大小相等的塊,每個存儲塊稱為一頁(在許多操作系統中,頁得大小通常為4k),主存和磁盤以頁為單位交換數據。當程序要讀取的數據不在主存中時,會觸發一個缺頁異常,此時系統會向磁盤發出讀盤信號,磁盤會找到數據的起始位置並向后連續讀取一頁或幾頁載入內存中,然后異常返回,程序繼續運行。

B-/+Tree索引的性能分析

      到這里終於可以分析B-/+Tree索引的性能了。

     上文說過一般使用磁盤I/O次數評價索引結構的優劣。先從B-Tree分析,根據B-Tree的定義,可知檢索一次最多需要訪問h個節點。數據庫系統的設計者巧妙利用了磁盤預讀原理,將一個節點的大小設為等於一個頁,這樣每個節點只需要一次I/O就可以完全載入。為了達到這個目的,在實際實現B-Tree還需要使用如下技巧:

     每次新建節點時,直接申請一個頁的空間,這樣就保證一個節點物理上也存儲在一個頁里,加之計算機存儲分配都是按頁對齊的,就實現了一個node只需一次I/O。

     B-Tree中一次檢索最多需要h-1次I/O(根節點常駐內存),漸進復雜度為O(h)=O(logdN)O(h)=O(logdN)。一般實際應用中,出度d是非常大的數字,通常超過100,因此h非常小(通常不超過3)。

     綜上所述,用B-Tree作為索引結構效率是非常高的。

     而紅黑樹這種結構,h明顯要深的多。由於邏輯上很近的節點(父子)物理上可能很遠,無法利用局部性,所以紅黑樹的I/O漸進復雜度也為O(h),效率明顯比B-Tree差很多。

    上文還說過,B+Tree更適合外存索引,原因和內節點出度d有關。從上面分析可以看到,d越大索引的性能越好,而出度的上限取決於節點內key和data的大小:

    dmax=floor(pagesize/(keysize+datasize+pointsize))dmax=floor(pagesize/(keysize+datasize+pointsize))

    floor表示向下取整。由於B+Tree內節點去掉了data域,因此可以擁有更大的出度,擁有更好的性能。

    這一章從理論角度討論了與索引相關的數據結構與算法問題,下一章將討論B+Tree是如何具體實現為MySQL中索引,同時將結合MyISAM和InnDB存儲引擎介紹非聚集索引和聚集索引兩種不同的索引實現形式。

五、聚簇索引與非聚簇索引

mysql中普遍使用B+Tree做索引,但在實現上又根據聚簇索引和非聚簇索引而不同。

1、聚簇索引

    所謂聚簇索引,就是指主索引文件和數據文件為同一份文件,聚簇索引主要用在Innodb存儲引擎中。在該索引實現方式中B+Tree的葉子節點上的data就是數據本身,key為主鍵,如果是一般索引的話,data便會指向對應的主索引,如下圖所示:

    在B+Tree的每個葉子節點增加一個指向相鄰葉子節點的指針,就形成了帶有順序訪問指針的B+Tree。做這個優化的目的是為了提高區間訪問的性能,例如上圖中如果要查詢key為從18到49的所有數據記錄,當找到18后,只需順着節點和指針順序遍歷就可以一次性訪問到所有數據節點,極大提到了區間查詢效率。

2、非聚簇索引

    聚簇索引就是指B+Tree的葉子節點上的data,並不是數據本身,而是數據存放的地址。主索引和輔助索引沒啥區別,只是主索引中的key一定得是唯一的。主要用在MyISAM存儲引擎中,如下圖:

非聚簇索引比聚簇索引多了一次讀取數據的IO操作,所以查找性能上會差。

六、MySQL索引實現

在MySQL中,索引屬於存儲引擎級別的概念,不同存儲引擎對索引的實現方式是不同的,下面主要討論MyISAM和InnoDB兩個存儲引擎的索引實現方式。

1、MyISAM索引實現

MyISAM引擎使用B+Tree作為索引結構,葉節點的data域存放的是數據記錄的地址。下圖是MyISAM索引的原理圖:

    這里設表一共有三列,假設我們以Col1為主鍵,則上圖是一個MyISAM表的主索引(Primary key)示意。可以看出MyISAM的索引文件僅僅保存數據記錄的地址。在MyISAM中,主索引和輔助索引(Secondary key)在結構上沒有任何區別,只是主索引要求key是唯一的,而輔助索引的key可以重復。如果我們在Col2上建立一個輔助索引,則此索引的結構如下圖所示:

    同樣也是一顆B+Tree,data域保存數據記錄的地址。因此,MyISAM中索引檢索的算法為首先按照B+Tree搜索算法搜索索引,如果指定的Key存在,則取出其data域的值,然后以data域的值為地址,讀取相應數據記錄。

MyISAM的索引方式也叫做“非聚集”的,之所以這么稱呼是為了與InnoDB的聚集索引區分。

2、InnoDB索引實現

     雖然InnoDB也使用B+Tree作為索引結構,但具體實現方式卻與MyISAM截然不同。

     第一個重大區別是InnoDB的數據文件本身就是索引文件。從上文知道,MyISAM索引文件和數據文件是分離的,索引文件僅保存數據記錄的地址。而在InnoDB中,表數據文件本身就是按B+Tree組織的一個索引結構,這棵樹的葉節點data域保存了完整的數據記錄。這個索引的key是數據表的主鍵,因此InnoDB表數據文件本身就是主索引。

     上圖是InnoDB主索引(同時也是數據文件)的示意圖,可以看到葉節點包含了完整的數據記錄。這種索引叫做聚集索引。因為InnoDB的數據文件本身要按主鍵聚集,所以InnoDB要求表必須有主鍵(MyISAM可以沒有),如果沒有顯式指定,則MySQL系統會自動選擇一個可以唯一標識數據記錄的列作為主鍵,如果不存在這種列,則MySQL自動為InnoDB表生成一個隱含字段作為主鍵,這個字段長度為6個字節,類型為長整形。

      第二個與MyISAM索引的不同是InnoDB的輔助索引data域存儲相應記錄主鍵的值而不是地址。換句話說,InnoDB的所有輔助索引都引用主鍵作為data域。例如,下圖為定義在Col3上的一個輔助索引:

     這里以英文字符的ASCII碼作為比較准則。聚集索引這種實現方式使得按主鍵的搜索十分高效,但是輔助索引搜索需要檢索兩遍索引:首先檢索輔助索引獲得主鍵,然后用主鍵到主索引中檢索獲得記錄。

     了解不同存儲引擎的索引實現方式對於正確使用和優化索引都非常有幫助,例如知道了InnoDB的索引實現后,就很容易明白為什么不建議使用過長的字段作為主鍵,因為所有輔助索引都引用主索引,過長的主索引會令輔助索引變得過大。再例如,用非單調的字段作為主鍵在InnoDB中不是個好主意,因為InnoDB數據文件本身是一顆B+Tree,非單調的主鍵會造成在插入新記錄時數據文件為了維持B+Tree的特性而頻繁的分裂調整,十分低效,而使用自增字段作為主鍵則是一個很好的選擇

對於InnoDB而言,因為節點下有數據文件,因此節點的分裂將會比較慢。對於InnoDB的主鍵,盡量用整型,而且是遞增的整型。如果是無規律的數據,將會產生頁的分裂,影響速度。

InnoDB索引MyISAM索引的區別:

一是主索引的區別,InnoDB的數據文件本身就是索引文件。而MyISAM的索引和數據是分開的。

二是輔助索引的區別:InnoDB的輔助索引data域存儲相應記錄主鍵的值而不是地址。而MyISAM的輔助索引和主索引沒有多大區別。

InnoDB的主索引文件上,直接存放該行數據,稱為聚簇索引。次索引指向對主鍵的引用。

Myisam中,主索引和次索引都指向物理行。

補充:索引覆蓋

索引覆蓋是指如果查詢的列恰好是索引的一部分,那么查詢只需要在索引文件上進行,不需要回行到磁盤再找數據。這種查詢速度非常快,稱為“索引覆蓋”。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM