http://blog.csdn.net/zjm750617105/article/details/51321889
本文是初學keras這兩天來,自己仿照addition_rnn.py,寫的一個實例,數據處理稍微有些不同,但是准確性相比addition_rnn.py 差一點,下面直接貼代碼,
解釋和注釋都在代碼里邊。
- <span style="font-family: Arial, Helvetica, sans-serif;">#coding:utf-8</span>
- from keras.models import Sequential
- from keras.layers.recurrent import LSTM
- from utils import log
- from numpy import random
- import numpy as np
- from keras.layers.core import RepeatVector, TimeDistributedDense, Activation
- '''''
- 先用lstm實現一個計算加法的keras版本, 根據addition_rnn.py改寫
- size: 500
- 10次: test_acu = 0.3050 base_acu= 0.3600
- 30次: rest_acu = 0.3300 base_acu= 0.4250
- size: 50000
- 10次: test_acu: loss: 0.4749 - acc: 0.8502 - val_loss: 0.4601 - val_acc: 0.8539
- base_acu: loss: 0.3707 - acc: 0.9008 - val_loss: 0.3327 - val_acc: 0.9135
- 20次: test_acu: loss: 0.1536 - acc: 0.9505 - val_loss: 0.1314 - val_acc: 0.9584
- base_acu: loss: 0.0538 - acc: 0.9891 - val_loss: 0.0454 - val_acc: 0.9919
- 30次: test_acu: loss: 0.0671 - acc: 0.9809 - val_loss: 0.0728 - val_acc: 0.9766
- base_acu: loss: 0.0139 - acc: 0.9980 - val_loss: 0.0502 - val_acc: 0.9839
- '''
- log = log()
- #defination the global variable
- training_size = 50000
- hidden_size = 128
- batch_size = 128
- layers = 1
- maxlen = 7
- single_digit = 3
- def generate_data():
- log.info("generate the questions and answers")
- questions = []
- expected = []
- seen = set()
- while len(seen) < training_size:
- num1 = random.randint(1, 999) #generate a num [1,999]
- num2 = random.randint(1, 999)
- #用set來存儲又有排序,來保證只有不同數據和結果
- key = tuple(sorted((num1,num2)))
- if key in seen:
- continue
- seen.add(key)
- q = '{}+{}'.format(num1,num2)
- query = q + ' ' * (maxlen - len(q))
- ans = str(num1 + num2)
- ans = ans + ' ' * (single_digit + 1 - len(ans))
- questions.append(query)
- expected.append(ans)
- return questions, expected
- class CharacterTable():
- '''''
- encode: 將一個str轉化為一個n維數組
- decode: 將一個n為數組轉化為一個str
- 輸入輸出分別為
- character_table = [' ', '+', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
- 如果一個question = [' 123+23']
- 那個改question對應的數組就是(7,12):
- 同樣expected最大是一個四位數[' 146']:
- 那么ans對應的數組就是[4,12]
- '''
- def __init__(self, chars, maxlen):
- self.chars = sorted(set(chars))
- '''''
- >>> b = [(c, i) for i, c in enumerate(a)]
- >>> dict(b)
- {' ': 0, '+': 1, '1': 3, '0': 2, '3': 5, '2': 4, '5': 7, '4': 6, '7': 9, '6': 8, '9': 11, '8': 10}
- 得出的結果是無序的,但是下面這種方式得出的結果是有序的
- '''
- self.char_index = dict((c, i) for i, c in enumerate(self.chars))
- self.index_char = dict((i, c) for i, c in enumerate(self.chars))
- self.maxlen = maxlen
- def encode(self, C, maxlen):
- X = np.zeros((maxlen, len(self.chars)))
- for i, c in enumerate(C):
- X[i, self.char_index[c]] = 1
- return X
- def decode(self, X, calc_argmax=True):
- if calc_argmax:
- X = X.argmax(axis=-1)
- return ''.join(self.index_char[x] for x in X)
- chars = '0123456789 +'
- character_table = CharacterTable(chars,len(chars))
- questions , expected = generate_data()
- log.info('Vectorization...') #失量化
- inputs = np.zeros((len(questions), maxlen, len(chars))) #(5000, 7, 12)
- labels = np.zeros((len(expected), single_digit+1, len(chars))) #(5000, 4, 12)
- log.info("encoding the questions and get inputs")
- for i, sentence in enumerate(questions):
- inputs[i] = character_table.encode(sentence, maxlen=len(sentence))
- #print("questions is ", questions[0])
- #print("X is ", inputs[0])
- log.info("encoding the expected and get labels")
- for i, sentence in enumerate(expected):
- labels[i] = character_table.encode(sentence, maxlen=len(sentence))
- #print("expected is ", expected[0])
- #print("y is ", labels[0])
- log.info("total inputs is %s"%str(inputs.shape))
- log.info("total labels is %s"%str(labels.shape))
- log.info("build model")
- model = Sequential()
- '''''
- LSTM(output_dim, init='glorot_uniform', inner_init='orthogonal',
- forget_bias_init='one', activation='tanh',
- inner_activation='hard_sigmoid',
- W_regularizer=None, U_regularizer=None, b_regularizer=None,
- dropout_W=0., dropout_U=0., **kwargs)
- output_dim: 輸出層的維數,或者可以用output_shape
- init:
- uniform(scale=0.05) :均勻分布,最常用的。Scale就是均勻分布的每個數據在-scale~scale之間。此處就是-0.05~0.05。scale默認值是0.05;
- lecun_uniform:是在LeCun在98年發表的論文中基於uniform的一種方法。區別就是lecun_uniform的scale=sqrt(3/f_in)。f_in就是待初始化權值矩陣的行。
- normal:正態分布(高斯分布)。
- Identity :用於2維方陣,返回一個單位陣.
- Orthogonal:用於2維方陣,返回一個正交矩陣. lstm默認
- Zero:產生一個全0矩陣。
- glorot_normal:基於normal分布,normal的默認 sigma^2=scale=0.05,而此處sigma^2=scale=sqrt(2 / (f_in+ f_out)),其中,f_in和f_out是待初始化矩陣的行和列。
- glorot_uniform:基於uniform分布,uniform的默認scale=0.05,而此處scale=sqrt( 6 / (f_in +f_out)) ,其中,f_in和f_out是待初始化矩陣的行和列。
- W_regularizer , b_regularizer and activity_regularizer:
- 官方文檔: http://keras.io/regularizers/
- from keras.regularizers import l2, activity_l2
- model.add(Dense(64, input_dim=64, W_regularizer=l2(0.01), activity_regularizer=activity_l2(0.01)))
- 加入規則項主要是為了在小樣本數據下過擬合現象的發生,我們都知道,一半在訓練過程中解決過擬合現象的方法主要中兩種,一種是加入規則項(權值衰減), 第二種是加大數據量
- 很顯然,加大數據量一般是不容易的,而加入規則項則比較容易,所以在發生過擬合的情況下,我們一般都采用加入規則項來解決這個問題.
- '''
- model.add(LSTM(hidden_size, input_shape=(maxlen, len(chars)))) #(7,12) 輸入層
- '''''
- keras.layers.core.RepeatVector(n)
- 把1維的輸入重復n次。假設輸入維度為(nb_samples, dim),那么輸出shape就是(nb_samples, n, dim)
- inputshape: 任意。當把這層作為某個模型的第一層時,需要用到該參數(元組,不包含樣本軸)。
- outputshape:(nb_samples,nb_input_units)
- '''
- model.add(RepeatVector(single_digit + 1))
- #表示有多少個隱含層
- for _ in range(layers):
- model.add(LSTM(hidden_size, return_sequences=True))
- '''''
- TimeDistributedDense:
- 官方文檔:http://keras.io/layers/core/#timedistributeddense
- keras.layers.core.TimeDistributedDense(output_dim,init='glorot_uniform', activation='linear', weights=None
- W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None,
- input_dim=None, input_length=None)
- 這是一個基於時間維度的全連接層。主要就是用來構建RNN(遞歸神經網絡)的,但是在構建RNN時需要設置return_sequences=True。
- for example:
- # input shape: (nb_samples, timesteps,10)
- model.add(LSTM(5, return_sequences=True, input_dim=10)) # output shape: (nb_samples, timesteps, 5)
- model.add(TimeDistributedDense(15)) # output shape:(nb_samples, timesteps, 15)
- W_constraint:
- from keras.constraints import maxnorm
- model.add(Dense(64, W_constraint =maxnorm(2))) #限制權值的各個參數不能大於2
- '''
- model.add(TimeDistributedDense(len(chars)))
- model.add(Activation('softmax'))
- '''''
- 關於目標函數和優化函數,參考另外一片博文: http://blog.csdn.net/zjm750617105/article/details/51321915
- '''
- model.compile(loss='categorical_crossentropy',
- optimizer='adam',
- metrics=['accuracy'])
- # Train the model each generation and show predictions against the validation dataset
- for iteration in range(1, 3):
- print()
- print('-' * 50)
- print('Iteration', iteration)
- model.fit(inputs, labels, batch_size=batch_size, nb_epoch=2,
- validation_split = 0.1)
- # Select 10 samples from the validation set at random so we can visualize errors
- model.get_config()