在使用mnist數據集的時候,一直想看看數據中原來的圖片,還有卷積層、池化層中的圖片,經過不斷的搗鼓,最后終於顯示了出來。只看數據集中的圖片用如下代碼就好了:
1 import tensorflow.examples.tutorials.mnist.input_data as input_data 2 import numpy as np 3 import matplotlib.pyplot as plt 4 import pylab 5 6 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) 7 8 batch_xs, batch_ys = mnist.train.next_batch(100) 9 for one_pic_vic in batch_xs: 10 one_pic_arr = np.reshape(one_pic_vic,(28,28)) 11 plt.imshow(one_pic_arr) 12 pylab.show()
batch_xs的Size是(100,784),其中100是由batch大小決定,mnist中的每張圖片本來的大小是28x28的,然后數據集中存成了1x784,所以batch_xs對應100張圖片。上面的代碼通過reshape把圖片又轉成了28x28,然后就可以通過plt.imshow()顯示出來:

如果要看卷積神經網絡中的卷積層、池化層,也可以用類似的方法,不過要先使用sess.run()方法來提取出來卷積層、池化層,因為圖像比較多,所以就用plt.imsave()來保存到文件中。
import tensorflow as tf import matplotlib.pyplot as plt import numpy as np from tensorflow.examples.tutorials.mnist import input_data def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') mnist = input_data.read_data_sets("data/", one_hot=True) sess = tf.InteractiveSession() x = tf.placeholder("float", shape=[None, 784]) y_ = tf.placeholder("float", shape=[None, 10]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1, 28, 28, 1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) # Now image size is reduced to 7*7 W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv)) cross_entropy = tf.reduce_sum(tf.pow(y_ - y_conv,2)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) sess.run(tf.initialize_all_variables()) for i in range(20000000): batch = mnist.train.next_batch(100) #print(batch) train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0}) if i % 20 is 0: print("step %d, training accuracy %f%%" % (i, train_accuracy*100)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) if(i % 7 == 0): pic = batch[0][0] pic = pic.reshape((28,28)) plt.imsave("mnist/pic" + str(i) + ".jpg",np.array(pic)) conv1 = sess.run(h_conv1,feed_dict={x: batch[0], y_: batch[1]}) for k in range(32): conv1_ = conv1[0,0:28,0:28,k] plt.imsave("mnist/pic" + str(i) + "-conv1-" + str(k) + ".jpg",np.array(conv1_)) pool1 = sess.run(h_pool1,feed_dict={x: batch[0], y_: batch[1]}) for k in range(32): pool1_ = pool1[0,0:14,0:14,k] plt.imsave("mnist/pic" + str(i) + "-pool1-" + str(k) + ".jpg",np.array(pool1_)) conv2 = sess.run(h_conv2,feed_dict={x: batch[0], y_: batch[1]}) for k in range(64): conv2_ = conv2[0,0:14,0:14,k] plt.imsave("mnist/pic" + str(i) + "-conv2-" + str(k) + ".jpg",np.array(conv2_)) print("Training finished") print("test accuracy %.3f" % accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
可以在變量空間中發現,第一個卷積層的圖片大小和原圖一樣,都是28x28,第一個池化層大小是14x14,圖像縮小了一倍,第二個卷積層大小是14x14。

保存的圖片如下:

通過上述代碼可以顯示mnist中的數據,但是有點麻煩,可以去這個網站看看(需要翻牆),這個網站可視化了cnn的訓練過程,但是准確率不高:

如果沒有梯子,也可以去這個網站看看cnn的訓練過程:

