如何顯示mnist中的數據(tensroflow)


 

     在使用mnist數據集的時候,一直想看看數據中原來的圖片,還有卷積層、池化層中的圖片,經過不斷的搗鼓,最后終於顯示了出來。只看數據集中的圖片用如下代碼就好了:

 1 import tensorflow.examples.tutorials.mnist.input_data as input_data
 2 import numpy as np
 3 import matplotlib.pyplot as plt
 4 import pylab
 5 
 6 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)    
 7 
 8 batch_xs, batch_ys = mnist.train.next_batch(100)        
 9 for one_pic_vic in batch_xs:
10     one_pic_arr = np.reshape(one_pic_vic,(28,28))                           
11     plt.imshow(one_pic_arr)
12     pylab.show()

 

  batch_xs的Size是(100,784),其中100是由batch大小決定,mnist中的每張圖片本來的大小是28x28的,然后數據集中存成了1x784,所以batch_xs對應100張圖片。上面的代碼通過reshape把圖片又轉成了28x28,然后就可以通過plt.imshow()顯示出來:

      如果要看卷積神經網絡中的卷積層、池化層,也可以用類似的方法,不過要先使用sess.run()方法來提取出來卷積層、池化層,因為圖像比較多,所以就用plt.imsave()來保存到文件中。

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data


def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)


def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)


def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')


mnist = input_data.read_data_sets("data/", one_hot=True)

sess = tf.InteractiveSession()

x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])

W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])

x_image = tf.reshape(x, [-1, 28, 28, 1])

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)

h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

# Now image size is reduced to 7*7
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

#cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
cross_entropy = tf.reduce_sum(tf.pow(y_ - y_conv,2))

train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.initialize_all_variables())

for i in range(20000000):
    batch = mnist.train.next_batch(100)
    #print(batch)
    train_accuracy = accuracy.eval(feed_dict={
        x: batch[0], y_: batch[1], keep_prob: 1.0})
    if i % 20 is 0:
        print("step %d, training accuracy %f%%" % (i, train_accuracy*100))
    train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    
    if(i % 7 == 0):                   
        pic = batch[0][0]
        pic = pic.reshape((28,28))
        plt.imsave("mnist/pic" + str(i)  + ".jpg",np.array(pic))
        
        conv1 = sess.run(h_conv1,feed_dict={x: batch[0], y_: batch[1]})
        for k in range(32):
            conv1_ = conv1[0,0:28,0:28,k]
            plt.imsave("mnist/pic" + str(i) + "-conv1-" + str(k) + ".jpg",np.array(conv1_))
            
        pool1 = sess.run(h_pool1,feed_dict={x: batch[0], y_: batch[1]})
        for k in range(32):
            pool1_ = pool1[0,0:14,0:14,k]
            plt.imsave("mnist/pic" + str(i) + "-pool1-" + str(k) + ".jpg",np.array(pool1_))
            
        conv2 = sess.run(h_conv2,feed_dict={x: batch[0], y_: batch[1]})
        for k in range(64):
            conv2_ = conv2[0,0:14,0:14,k]
            plt.imsave("mnist/pic" + str(i) + "-conv2-" + str(k)  + ".jpg",np.array(conv2_))

print("Training finished")

print("test accuracy %.3f" % accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

  可以在變量空間中發現,第一個卷積層的圖片大小和原圖一樣,都是28x28,第一個池化層大小是14x14,圖像縮小了一倍,第二個卷積層大小是14x14。

 

  保存的圖片如下:

 

  通過上述代碼可以顯示mnist中的數據,但是有點麻煩,可以去這個網站看看(需要翻牆),這個網站可視化了cnn的訓練過程,但是准確率不高:

 

  如果沒有梯子,也可以去這個網站看看cnn的訓練過程:

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM