mapreduce三大組件:Combiner\Sort\Partitioner
默認組件:排序,分區(不設置,系統有默認值)
一、mapreduce中的Combiner
1、什么是combiner
Combiner 是 MapReduce 程序中 Mapper 和 Reducer 之外的一種組件,它的作用是在 maptask 之后給 maptask 的結果進行局部匯總,以減輕 reducetask 的計算負載,減少網絡傳輸
2、如何使用combiner
Combiner 和 Reducer 一樣,編寫一個類,然后繼承 Reducer, reduce 方法中寫具體的 Combiner 邏輯,然后在 job 中設置 Combiner 類: job.setCombinerClass(FlowSumCombine.class)
(如果combiner和reduce邏輯一樣,就不用寫combiner類了,直接在job設置信息)

3、使用combiner注意事項
(1) Combiner 和 Reducer 的區別在於運行的位置:
Combiner 是在每一個 maptask 所在的節點運行
Reducer 是接收全局所有 Mapper 的輸出結果
(2) Combiner 的輸出 kv 應該跟 reducer 的輸入 kv 類型要對應起來
(3) Combiner 的使用要非常謹慎,因為 Combiner 在 MapReduce 過程中可能調用也可能不調 用,可能調一次也可能調多次,所以: Combiner 使用的原則是:有或沒有都不能影響業務 邏輯,都不能影響最終結果(求平均值時,combiner和reduce邏輯不一樣)
二、mapreduce中的序列化
1、概述
Java 的序列化是一個重量級序列化框架( Serializable),一個對象被序列化后,會附帶很多額 外的信息(各種校驗信息, header,繼承體系等),不便於在網絡中高效傳輸;所以, hadoop 自己開發了一套序列化機制( Writable),精簡,高效
Hadoop 中的序列化框架已經對基本類型和 null 提供了序列化的實現了。分別是:

2、Java序列化
以案例說明為例:

3、自定義對象實現mapreduce框架的序列化
如果需要將自定義的 bean 放在 key 中傳輸,則還需要實現 Comparable 接口,因為 mapreduce框中的 shuffle 過程一定會對 key 進行排序,此時,自定義的 bean 實現的接口應該是:
public class FlowBean implements WritableComparable<FlowBean>
以案例為例說明
下面是進行了序列化的 FlowBean 類:




案例:


1、
package com.ghgj.mr.exerciseflow;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;
public class Flow implements WritableComparable<Flow>{
private String phone;
private long upflow; // 上行流量
private long downflow; // 下行流量
private long sumflow; // 上行和下行流量之和
public long getUpflow() {
return upflow;
}
public void setUpflow(long upflow) {
this.upflow = upflow;
}
public long getDownflow() {
return downflow;
}
public void setDownflow(long downflow) {
this.downflow = downflow;
}
public long getSumflow() {
return sumflow;
}
public void setSumflow(long sumflow) {
this.sumflow = sumflow;
}
public String getPhone() {
return phone;
}
public void setPhone(String phone) {
this.phone = phone;
}
public Flow() {
}
public Flow(long upflow, long downflow, String phone) {
super();
this.upflow = upflow;
this.downflow = downflow;
this.sumflow = upflow + downflow;
this.phone = phone;
}
@Override
public String toString() {
return phone +"\t" + upflow +"\t" + downflow +"\t" + sumflow;
}
@Override
public void write(DataOutput out) throws IOException {
// TODO Auto-generated method stub
out.writeLong(upflow);
out.writeLong(downflow);
out.writeLong(sumflow);
out.writeUTF(phone);
}
@Override
public void readFields(DataInput in) throws IOException {
// TODO Auto-generated method stub
this.upflow = in.readLong();
this.downflow = in.readLong();
this.sumflow = in.readLong();
this.phone = in.readUTF();
}
@Override
public int compareTo(Flow flow) {
if((flow.getSumflow() - this.sumflow) == 0){
return this.phone.compareTo(flow.getPhone());
}else{
return (int)(flow.getSumflow() - this.sumflow);
}
}
}
package com.ghgj.mr.exerciseflow;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
* 手機號 上行流量 下行流量 總流量
* @author Administrator
*
*/
public class FlowExercise1 {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(FlowExercise1.class);
job.setMapperClass(FlowExercise1Mapper.class);
job.setReducerClass(FlowExercise1Reducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Flow.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.setInputPaths(job, "d:/flow/input");
FileOutputFormat.setOutputPath(job, new Path("d:/flow/output13"));
boolean status = job.waitForCompletion(true);
System.exit(status? 0 : 1);
}
static class FlowExercise1Mapper extends Mapper<LongWritable, Text, Text, Flow>{
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {
String[] splits = value.toString().split("\t");
String phone = splits[1];
long upflow = Long.parseLong(splits[8]);
long downflow = Long.parseLong(splits[9]);
Flow flow = new Flow(upflow, downflow);
context.write(new Text(phone), flow);
}
}
static class FlowExercise1Reducer extends Reducer<Text, Flow, Text, Flow>{
@Override
protected void reduce(Text phone, Iterable<Flow> flows, Context context)
throws IOException, InterruptedException {
long sumUpflow = 0; // 該phone用戶的總上行流量
long sumDownflow = 0;
for(Flow f : flows){
sumUpflow += f.getUpflow();
sumDownflow += f.getDownflow();
}
Flow sumFlow = new Flow(sumUpflow, sumDownflow);
context.write(phone, sumFlow);
// String v = sumUpflow +"\t" + sumDownflow +"\t" + (sumUpflow + sumDownflow);
// context.write(phone, new Text(v));
}
}
}
2、
package com.ghgj.mr.exerciseflow;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class FlowExercise2Sort {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(FlowExercise2Sort.class);
job.setMapperClass(FlowExercise2SortMapper.class);
job.setReducerClass(FlowExercise2SortReducer.class);
job.setMapOutputKeyClass(Flow.class);
job.setMapOutputValueClass(Text.class);
// job.setCombinerClass(FlowExercise1Combiner.class);
// job.setCombinerClass(FlowExercise1Reducer.class);
job.setOutputKeyClass(NullWritable.class);
job.setOutputValueClass(Flow.class);
FileInputFormat.setInputPaths(job, "d:/flow/output1");
FileOutputFormat.setOutputPath(job, new Path("d:/flow/sortoutput6"));
boolean status = job.waitForCompletion(true);
System.exit(status? 0 : 1);
}
static class FlowExercise2SortMapper extends Mapper<LongWritable, Text, Flow, Text>{
@Override
protected void map(LongWritable key, Text value,
Mapper<LongWritable, Text, Flow, Text>.Context context)
throws IOException, InterruptedException {
String[] splits = value.toString().split("\t");
String phone = splits[0];
long upflow = Long.parseLong(splits[1]);
long downflow = Long.parseLong(splits[2]);
// long sumflow = Long.parseLong(splits[3]);
Flow flow = new Flow(upflow, downflow, phone);
context.write(flow, new Text(phone));
}
}
static class FlowExercise2SortReducer extends Reducer<Flow, Text, NullWritable, Flow>{
@Override
protected void reduce(Flow flow, Iterable<Text> phones, Context context)
throws IOException, InterruptedException {
for(Text t : phones){
context.write(NullWritable.get(), flow);
}
}
}
}
三、mapreduce中的sort
需求: 把上例求得的流量綜合從大到小倒序排
基本思路:實現自定義的 bean 來封裝流量信息,並將 bean 作為 map 輸出的 key 來傳輸 MR 程序在處理數據的過程中會對數據排序(map 輸出的 kv 對傳輸到 reduce 之前,會排序), 排序的依據是 map 輸出的 key, 所以,我們如果要實現自己需要的排序規則,則可以考慮將
排序因素放到 key 中,讓 key 實現接口: WritableComparable, 然后重寫 key 的 compareTo 方法
(上面第二題)
四、mapreduce中的partitioner
需求: 根據歸屬地輸出流量統計數據結果到不同文件,以便於在查詢統計結果時可以定位到 省級范圍進行
思路:MapReduce 中會將 map 輸出的 kv 對,按照相同 key 分組,然后分發給不同的 reducetask
默認的分發規則為:根據 key 的 hashcode%reducetask 數來分發, 所以:如果要按照我們自 己的需求進行分組,則需要改寫數據分發(分組)組件 Partitioner
自定義一個 CustomPartitioner 繼承抽象類: Partitioner
然后在 job 對象中,設置自定義 partitioner: job.setPartitionerClass(ProvincePartitioner.class)
(上面第三題)




