Spark應用程序部署工具Spark Submit


 

 

  

  不多說,直接上干貨!

 

 

 

 spark-submit在哪個位置

 

[spark@master ~]$ cd $SPARK_HOME/bin
[spark@master bin]$ pwd
/usr/local/spark/spark-1.6.1-bin-hadoop2.6/bin
[spark@master bin]$ ll
total 92
-rwxr-xr-x. 1 spark spark 1099 Feb 27  2016 beeline
-rw-r--r--. 1 spark spark  932 Feb 27  2016 beeline.cmd
-rw-r--r--. 1 spark spark 1910 Feb 27  2016 load-spark-env.cmd
-rw-r--r--. 1 spark spark 2143 Feb 27  2016 load-spark-env.sh
-rwxr-xr-x. 1 spark spark 3459 Feb 27  2016 pyspark
-rw-r--r--. 1 spark spark 1486 Feb 27  2016 pyspark2.cmd
-rw-r--r--. 1 spark spark 1000 Feb 27  2016 pyspark.cmd
-rwxr-xr-x. 1 spark spark 2384 Feb 27  2016 run-example
-rw-r--r--. 1 spark spark 2682 Feb 27  2016 run-example2.cmd
-rw-r--r--. 1 spark spark 1012 Feb 27  2016 run-example.cmd
-rwxr-xr-x. 1 spark spark 2858 Feb 27  2016 spark-class
-rw-r--r--. 1 spark spark 2365 Feb 27  2016 spark-class2.cmd
-rw-r--r--. 1 spark spark 1010 Feb 27  2016 spark-class.cmd
-rwxr-xr-x. 1 spark spark 1049 Feb 27  2016 sparkR
-rw-r--r--. 1 spark spark 1010 Feb 27  2016 sparkR2.cmd
-rw-r--r--. 1 spark spark  998 Feb 27  2016 sparkR.cmd
-rwxr-xr-x. 1 spark spark 3026 Feb 27  2016 spark-shell
-rw-r--r--. 1 spark spark 1528 Feb 27  2016 spark-shell2.cmd
-rw-r--r--. 1 spark spark 1008 Feb 27  2016 spark-shell.cmd
-rwxr-xr-x. 1 spark spark 1075 Feb 27  2016 spark-sql
-rwxr-xr-x. 1 spark spark 1050 Feb 27  2016 spark-submit
-rw-r--r--. 1 spark spark 1126 Feb 27  2016 spark-submit2.cmd
-rw-r--r--. 1 spark spark 1010 Feb 27  2016 spark-submit.cmd
[spark@master bin]$ 

 

 

 

 

 

 

 

 

 

 

打包Spark application

  將Spark application打成assemblyed jar。我們都知道,其實我們寫好的一個Spark application,它除了spark本身的jar包和hdfs的jar包之外,它還有第三方其他的jar包對吧!所以,我們一般借助於maven或sbt的方式來打到最后的一個assemblyed jar。(同時,注意,只打包需要的依賴!!)

 

 

  構建工具:

    1.maven--maven-shade-plugin

    請移步,

Spark編程環境搭建(基於Intellij IDEA的Ultimate版本)(包含Java和Scala版的WordCount)(博主強烈推薦)

   

   2.sbt

     這種方式,我不多說。個人偏愛好maven。

 

   3、更多方式見

 IDEA里如何多種方式打jar包,然后上傳到集群

 

 

 

 

 

 

 

 

使用spark-submit啟動Spark application

  $SPARK_HOME/bin/spark-submit \
  --class <main-class> \
  --master \
  --deploy-mode \
  --conf = \
  ... # other options  \
  [application-arguments]

  請移步,見

Spark on YARN簡介與運行wordcount(master、slave1和slave2)(博主推薦)

 Spark standalone簡介與運行wordcount(master、slave1和slave2)

 

 

 

 

 

 

 

 

spark-submit usage

  Usage: spark-submit [options] [app arguments]

  Usage: spark-submit --kill [submission ID] --master [spark://...]

  Usage: spark-submit --status [submission ID] --master [spark://...]

[spark@master ~]$ $SPARK_HOME/bin/spark-submit  
或者
[spark@master
~]$ $SPARK_HOME/bin/spark-submit --help

 

[spark@master ~]$ $SPARK_HOME/bin/spark-submit 或者 $SPARK_HOME/bin/spark-submit --help
Usage: spark-submit [options] <app jar | python file> [app arguments]
Usage: spark-submit --kill [submission ID] --master [spark://...]
Usage: spark-submit --status [submission ID] --master [spark://...]

Options:
  --master MASTER_URL         spark://host:port, mesos://host:port, yarn, or local.
  --deploy-mode DEPLOY_MODE   Whether to launch the driver program locally ("client") or
                              on one of the worker machines inside the cluster ("cluster")
                              (Default: client).
  --class CLASS_NAME          Your application's main class (for Java / Scala apps).
  --name NAME                 A name of your application.
  --jars JARS                 Comma-separated list of local jars to include on the driver
                              and executor classpaths.
  --packages                  Comma-separated list of maven coordinates of jars to include
                              on the driver and executor classpaths. Will search the local
                              maven repo, then maven central and any additional remote
                              repositories given by --repositories. The format for the
                              coordinates should be groupId:artifactId:version.
  --exclude-packages          Comma-separated list of groupId:artifactId, to exclude while
                              resolving the dependencies provided in --packages to avoid
                              dependency conflicts.
  --repositories              Comma-separated list of additional remote repositories to
                              search for the maven coordinates given with --packages.
  --py-files PY_FILES         Comma-separated list of .zip, .egg, or .py files to place
                              on the PYTHONPATH for Python apps.
  --files FILES               Comma-separated list of files to be placed in the working
                              directory of each executor.

  --conf PROP=VALUE           Arbitrary Spark configuration property.
  --properties-file FILE      Path to a file from which to load extra properties. If not
                              specified, this will look for conf/spark-defaults.conf.
  --driver-memory MEM         Memory for driver (e.g. 1000M, 2G) (Default: 1024M).
  --driver-java-options       Extra Java options to pass to the driver.
  --driver-library-path       Extra library path entries to pass to the driver.
  --driver-class-path         Extra class path entries to pass to the driver. Note that
                              jars added with --jars are automatically included in the
                              classpath.

  --executor-memory MEM       Memory per executor (e.g. 1000M, 2G) (Default: 1G).

  --proxy-user NAME           User to impersonate when submitting the application.

  --help, -h                  Show this help message and exit
  --verbose, -v               Print additional debug output
  --version,                  Print the version of current Spark

 Spark standalone with cluster deploy mode only:
  --driver-cores NUM          Cores for driver (Default: 1).

 Spark standalone or Mesos with cluster deploy mode only:
  --supervise                 If given, restarts the driver on failure.
  --kill SUBMISSION_ID        If given, kills the driver specified.
  --status SUBMISSION_ID      If given, requests the status of the driver specified.

 Spark standalone and Mesos only:
  --total-executor-cores NUM  Total cores for all executors.

 Spark standalone and YARN only:
  --executor-cores NUM        Number of cores per executor. (Default: 1 in YARN mode,
                              or all available cores on the worker in standalone mode)

 YARN-only:
  --driver-cores NUM          Number of cores used by the driver, only in cluster mode
                              (Default: 1).
  --queue QUEUE_NAME          The YARN queue to submit to (Default: "default").
  --num-executors NUM         Number of executors to launch (Default: 2).
  --archives ARCHIVES         Comma separated list of archives to be extracted into the
                              working directory of each executor.
  --principal PRINCIPAL       Principal to be used to login to KDC, while running on
                              secure HDFS.
  --keytab KEYTAB             The full path to the file that contains the keytab for the
                              principal specified above. This keytab will be copied to
                              the node running the Application Master via the Secure
                              Distributed Cache, for renewing the login tickets and the
                              delegation tokens periodically.
      
[spark@master ~]$ 

 

 

 

 

 

 

 

 

 

 

spark-submit option—運行模式相關

  設置Spark的運行模式,根據需求選擇

  典型的Master URL:

          

      注意:--deploy-mode不是spark on yarn專有

 

   

  典型的Master URL:

        

 

 

 

 

 

spark-submit options—常規

        

 

 

 

 

 

spark-submit options—classpath相關、driver、executor相關

          

 

 

 

 

 

 

 

 

 spark-submit options—資源、配置相關

          

 

 

 

 

 

 

spark-submit options—YARN-only

  以下options只有在Saprk on YARN模式下才有效

            

 

 

 

 

 

 

 

spark-submit options—其他

        

 

 

 

 

 

 

 

Advanced Dependency Management

  依賴包分發方式

    --jars

      1.file—絕對路徑,file:/xxxx

        2.hdfs、http、https、ftp

      3.local

    --repositories、--packages

    --py-files(僅限python app)

  Clean up

    Jars和files會被拷貝到每個executor的工作目錄,需要定期清理:

      Spark on yarn會自動清理(spark.yarn.preserve.staging.files設置為flase,默認就是false)

      Spark standalone(spark.worker.cleanup.appDataTtl)  

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM