模型融合
有的時候我們手頭可能有了若干個已經訓練好的模型,這些模型可能是同樣的結構,也可能是不同的結構,訓練模型的數據可能是同一批,也可能不同。無論是出於要通過ensemble提升性能的目的,還是要設計特殊作用的網絡,在用Caffe做工程時,融合都是一個常見的步驟。
比如考慮下面的場景,我們有兩個模型,都是基於resnet-101,分別在兩撥數據上訓練出來的。我們希望把這兩個模型的倒數第二層拿出來,接一個fc層然后訓練這個fc層進行融合。那么有兩個問題需要解決:1)兩個模型中的層的名字都是相同的,但是不同模型對應的權重不同;2)如何同時在一個融合好的模型中把兩個訓練好的權重都讀取進來。
Caffe中並沒有直接用於融合的官方工具,本文介紹一個簡單有效的土辦法,用融合模型進行ensemble的例子,一步步實現模型融合。
完整例子
模型定義和腳本:
https://github.com/frombeijingwithlove/dlcv_for_beginners/tree/master/random_bonus/multiple_models_fusion_caffe
預訓練模型:
https://github.com/frombeijingwithlove/dlcv_book_pretrained_caffe_models/blob/master/mnist_lenet_odd_iter_30000.caffemodel
https://github.com/frombeijingwithlove/dlcv_book_pretrained_caffe_models/blob/master/mnist_lenet_even_iter_30000.caffemodel
雖然模型只是簡單的LeNet-5,但是方法是可以拓展到其他大模型上的。
模型(及數據)准備:直接采用預訓練好的模型
本文的例子要融合的是兩個不同任務的模型:
對偶數0, 2, 4, 6, 8分類的模型
對奇數1, 3, 5, 7, 9分類的模型
采用的網絡都是LeNet-5
直接從上節中提到的本文例子的repo下載預定義的模型和權重。
上一部分第一個鏈接中已經寫好了用來訓練的LeNet-5結構和solver,用的是ImageData層,以訓練奇數分類的模型為例:
name: "LeNet"
layer {
name: "mnist"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mean_value: 128
scale: 0.00390625
}
image_data_param {
source: "train_odd.txt"
is_color: false
batch_size: 25
}
}
layer {
name: "mnist"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mean_value: 128
scale: 0.00390625
}
image_data_param {
source: "val_odd.txt"
is_color: false
batch_size: 20
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 5
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "ip2"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}
訓練偶數分類的prototxt的唯一區別就是ImageData層中數據的來源不一樣。
模型(及數據)准備:Start From Scratch
當然也可以自行訓練這兩個模型,畢竟只是個用於演示的小例子,很簡單。方法如下:
第一步 下載MNIST數據
直接運行download_mnist.sh這個腳本
第二步 轉換MNIST數據為圖片
運行convert_mnist.py,可以從mnist.pkl.gz中提取所有圖片為jpg
import os
import pickle, gzip
from matplotlib import pyplot
# Load the dataset
print('Loading data from mnist.pkl.gz ...')
with gzip.open('mnist.pkl.gz', 'rb') as f:
train_set, valid_set, test_set = pickle.load(f)
imgs_dir = 'mnist'
os.system('mkdir -p {}'.format(imgs_dir))
datasets = {'train': train_set, 'val': valid_set, 'test': test_set}
for dataname, dataset in datasets.items():
print('Converting {} dataset ...'.format(dataname))
data_dir = os.sep.join([imgs_dir, dataname])
os.system('mkdir -p {}'.format(data_dir))
for i, (img, label) in enumerate(zip(*dataset)):
filename = '{:0>6d}_{}.jpg'.format(i, label)
filepath = os.sep.join([data_dir, filename])
img = img.reshape((28, 28))
pyplot.imsave(filepath, img, cmap='gray')
if (i+1) % 10000 == 0:
print('{} images converted!'.format(i+1))
第三步 生成奇數、偶數和全部數據的列表
運行gen_img_list.py,可以分別生成奇數、偶數和全部數據的訓練及驗證列表:
import os
import sys
mnist_path = 'mnist'
data_sets = ['train', 'val']
for data_set in data_sets:
odd_list = '{}_odd.txt'.format(data_set)
even_list = '{}_even.txt'.format(data_set)
all_list = '{}_all.txt'.format(data_set)
root = os.sep.join([mnist_path, data_set])
filenames = os.listdir(root)
with open(odd_list, 'w') as f_odd, open(even_list, 'w') as f_even, open(all_list, 'w') as f_all:
for filename in filenames:
filepath = os.sep.join([root, filename])
label = int(filename[:filename.rfind('.')].split('_')[1])
line = '{} {}\n'.format(filepath, label)
f_all.write(line)
line = '{} {}\n'.format(filepath, int(label/2))
if label % 2:
f_odd.write(line)
else:
f_even.write(line)
第四步 訓練兩個不同的模型
就直接訓練就行了。Solver的例子如下:
net: "lenet_odd_train_val.prototxt"
test_iter: 253
test_initialization: false
test_interval: 1000
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
lr_policy: "step"
gamma: 0.707
stepsize: 1000
display: 200
max_iter: 30000
snapshot: 30000
snapshot_prefix: "mnist_lenet_odd"
solver_mode: GPU
注意到test_iter是個奇怪的253,這是因為MNIST的驗證集中奇數樣本多一些,一共是5060個,訓練隨便取個30個epoch,應該是夠了。
制作融合后模型的網絡定義
前面提到了模型融合的難題之一在於層的名字可能是相同的,解決這個問題非常簡單,只要把名字改成不同就可以,加個前綴就行。按照這個思路,我們給奇數分類和偶數分類的模型的每層前分別加上odd/和even/作為前綴,同時我們給每層的學習率置為0,這樣融合的時候就可以只訓練融合的全連接層就可以了。實現就是用Python自帶的正則表達式匹配,然后進行字符串替換,代碼就是第一部分第一個鏈接中的rename_n_freeze_layers.py:
import sys
import re
layer_name_regex = re.compile('name:\s*"(.*?)"')
lr_mult_regex = re.compile('lr_mult:\s*\d+\.*\d*')
input_filepath = sys.argv[1]
output_filepath = sys.argv[2]
prefix = sys.argv[3]
with open(input_filepath, 'r') as fr, open(output_filepath, 'w') as fw:
prototxt = fr.read()
layer_names = set(layer_name_regex.findall(prototxt))
for layer_name in layer_names:
prototxt = prototxt.replace(layer_name, '{}/{}'.format(prefix, layer_name))
lr_mult_statements = set(lr_mult_regex.findall(prototxt))
for lr_mult_statement in lr_mult_statements:
prototxt = prototxt.replace(lr_mult_statement, 'lr_mult: 0')
fw.write(prototxt)
這個方法雖然土,不過有效,另外需要注意的是如果確定不需要動最后一層以外的參數,或者原始的訓練prototxt中就沒有lr_mult的話,可以考慮用Caffe的propagate_down這個參數。把這個腳本分別對奇數和偶數模型執行,並記住自己設定的前綴even和odd,然后把數據層到ip1層的定義復制並粘貼到一個文件中,然后把ImageData層和融合層的定義也寫入到這個文件,注意融合前需要先用Concat層把特征拼接一下:
name: "LeNet"
layer {
name: "mnist"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mean_value: 128
scale: 0.00390625
}
image_data_param {
source: "train_all.txt"
is_color: false
batch_size: 50
}
}
layer {
name: "mnist"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mean_value: 128
scale: 0.00390625
}
image_data_param {
source: "val_all.txt"
is_color: false
batch_size: 20
}
}
...
### rename_n_freeze_layers.py 生成的網絡結構部分 ###
...
layer {
name: "concat"
bottom: "odd/ip1"
bottom: "even/ip1"
top: "ip1_fused"
type: "Concat"
concat_param {
axis: 1
}
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1_fused"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "ip2"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}
分別讀取每個模型的權重並生成融合模型的權重
這個思路就是用pycaffe進行讀取,然后按照層名字的對應關系進行值拷貝,最后再存一下就可以,代碼如下:
import sys
sys.path.append('/path/to/caffe/python')
import caffe
fusion_net = caffe.Net('lenet_fusion_train_val.prototxt', caffe.TEST)
model_list = [
('even', 'lenet_even_train_val.prototxt', 'mnist_lenet_even_iter_30000.caffemodel'),
('odd', 'lenet_odd_train_val.prototxt', 'mnist_lenet_odd_iter_30000.caffemodel')
]
for prefix, model_def, model_weight in model_list:
net = caffe.Net(model_def, model_weight, caffe.TEST)
for layer_name, param in net.params.iteritems():
n_params = len(param)
try:
for i in range(n_params):
net.params['{}/{}'.format(prefix, layer_name)][i].data[...] = param[i].data[...]
except Exception as e:
print(e)
fusion_net.save('init_fusion.caffemodel')
訓練融合后的模型
這個也沒什么好說的了,直接訓練即可,本文例子的參考Solver如下:
net: "lenet_fusion_train_val.prototxt"
test_iter: 500
test_initialization: false
test_interval: 1000
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
lr_policy: "step"
gamma: 0.707
stepsize: 1000
display: 200
max_iter: 30000
snapshot: 30000
snapshot_prefix: "mnist_lenet_fused"
solver_mode: GPU