九章算法班ladder題目梳理


1 - 從strStr談面試技巧與代碼風格


 

13.字符串查找

如果target在source中,返回起始下標,否則返回-1

要點:該題O(mn)可過,兩層循環即可。

class Solution:
    def strStr(self, source, target):
        # write your code here
        if source is None or target is None:
            return -1
        if target == '':
            return 0
        for i in range(len(source)):
            m = i
            n = 0
            while m < len(source) and source[m] == target[n]:
                if n == len(target) - 1:
                    return i
                m += 1
                n += 1
        return -1

17.4.7二刷

class Solution:
    def strStr(self, source, target):
        # write your code here
        if source is None or target is None:
            return -1
        if not target:
            return 0
            
        for i in range(len(source) - len(target) + 1):
            for j in range(len(target)):
                if source[i + j] != target[j]:
                    break
                if j == len(target) - 1:
                    return i
        return -1

-------------------------------------------------------------------------

17.子集

返回一個整數list的所有子集。

要點:某些地方注意使用[:]做拷貝。

class Solution:
    """
    @param S: The set of numbers.
    @return: A list of lists. See example.
    """
    def subsets(self, S):
        # write your code here
        results = []
        if not S:
            return results
        S.sort()
        self.dfsHelper(S, 0, [], results)
        return results

    def dfsHelper(self, S, startnum, subset, results):
        results.append(subset[:])
        for i in range(startnum, len(S)):
            subset.append(S[i])
            self.dfsHelper(S, i + 1, subset, results)
            subset.pop()

17.4.7二刷

class Solution:
    """
    @param S: The set of numbers.
    @return: A list of lists. See example.
    """
    def subsets(self, S):
        # write your code here
        result = []
        S.sort()
        self.helper(S, 0, [], result)
        return result
        
    def helper(self, S, start, subset, result):
        result.append(subset[:])
        for i in range(start, len(S)):
            subset.append(S[i])
            self.helper(S, i + 1, subset, result)
            subset.pop()

-------------------------------------------------------------------------

18.帶重復元素的子集

給定一個可能具有重復數字的列表,返回其所有可能的子集(子集不能重復)。

要點:選代表,當存在重復元素時,必須前一個元素在子集中,后一個元素才能加入子集。

class Solution:
    """
    @param S: A set of numbers.
    @return: A list of lists. All valid subsets.
    """
    def subsetsWithDup(self, S):
        # write your code here
        results = []
        if not S:
            return results
        S.sort()
        self.dfsHelper(S, 0, [], results)
        return results

    def dfsHelper(self, S, start_index, subset, results):
        results.append(subset[:])
        for i in range(start_index, len(S)):
            if i != start_index and subset.count(S[i]) != i - S.index(S[i]):
                continue
            subset.append(S[i])
            self.dfsHelper(S, i + 1, subset, results)
            subset.pop()

17.4.7二刷

class Solution:
    """
    @param S: A set of numbers.
    @return: A list of lists. All valid subsets.
    """
    def subsetsWithDup(self, S):
        # write your code here
        results = []
        S.sort()
        self.helper(S, 0, [], results)
        return results

    def helper(self, S, start_index, subset, results):
        results.append(subset[:])
        for i in range(start_index, len(S)):
            # 注意下面這個寫法
            if i != start_index and S[i] == S[i - 1]:
                continue
            subset.append(S[i])
            self.helper(S, i + 1, subset, results)
            subset.pop()

-------------------------------------------------------------------------

15.全排列

給定一個數字列表,返回其所有可能的排列。沒有重復數字。

要點:要合理使用切片,二刷記得優化

class Solution:
    """
    @param nums: A list of Integers.
    @return: A list of permutations.
    """
    def permute(self, nums):
        # write your code here
        results = []
        if nums is None:
            return results
        nums.sort()
        self.dfsHelper(nums[:], [], results, len(nums))
        return results

    def dfsHelper(self, nums, subset, results, length):
        if len(subset) == length:
            results.append(subset[:])
            return
        for i in range(len(nums)):
            subset.append(nums[i])
            self.dfsHelper(nums[:i] + nums[i + 1:], subset, results, length)
            subset.pop()

17.4.7二刷,使用set避免大量切片,set刪除指定元素O(1)

class Solution:
    """
    @param nums: A list of Integers.
    @return: A list of permutations.
    """
    def permute(self, nums):
        # write your code here
        result = []
        self.helper(nums, result, [], set(range(len(nums))))
        return result

    def helper(self, nums, result, subsequence, not_visited):
        if not not_visited:
            result.append(subsequence[:])
            return
        for index in not_visited:
            subsequence.append(nums[index])
            not_visited.remove(index)
            self.helper(nums, result, subsequence, not_visited)
            not_visited.add(index)
            subsequence.pop()

  

-------------------------------------------------------------------------

16.帶重復元素的排列

給出一個具有重復數字的列表,找出列表所有不同的排列。

要點:選代表。重復元素中,后面的進入subset的前提是前面的都在subset中。

class Solution:
    """
    @param nums: A list of integers.
    @return: A list of unique permutations.
    """
    def permuteUnique(self, nums):
        # write your code here
        results = []
        if nums is None:
            return results
        nums.sort()
        self.dfsHelper(nums[:], [], results, nums)
        return results

    def dfsHelper(self, nums, subset, results, S):
        if len(subset) == len(S):
            results.append(subset[:])
            return
        for i in range(len(nums)):
            if nums.count(nums[i]) > 1 and nums.index(nums[i]) != i:
                continue
            subset.append(nums[i])
            self.dfsHelper(nums[:i] + nums[i + 1:], subset, results, S)
            subset.pop()

17.4.7二刷

class Solution:
    """
    @param nums: A list of integers.
    @return: A list of unique permutations.
    """
    def permuteUnique(self, nums):
        # write your code here
        result = []
        nums.sort()
        self.helper(nums, result, [], set(range(len(nums))))
        return result

    def helper(self, nums, result, subsequence, not_visited):
        if not not_visited:
            result.append(subsequence[:])
            return
        for index in not_visited:
            if index != 0 and nums[index] == nums[index - 1] \
                and (index - 1) in not_visited:
                continue
            subsequence.append(nums[index])
            not_visited.remove(index)
            self.helper(nums, result, subsequence, not_visited)
            not_visited.add(index)
            subsequence.pop()

  

-------------------------------------------------------------------------

594.strStr II 

如果target在source中,返回起始下標,否則返回-1,要求時間復雜度O(m + n)

要點:使用Rabin Karp,維護hash滑動窗口,計算原串各個子串hash值,然后與目標串hash值比較。

注意1、整形越界。2、減法可能導致負數。3、double check

class Solution:
    # @param {string} source a source string
    # @param {string} target a target string
    # @return {int} an integer as index
    def strStr2(self, source, target):
        # Write your code here
        BASE = 1000000
        if source is None or target is None:
            return -1
        if target == '':
            return 0

        power = 1
        for i in range(len(target) - 1):
            power = (power * 31) % BASE

        targetHashCode = 0
        for i in range(len(target)):
            targetHashCode = (targetHashCode * 31 + ord(target[i])) % BASE

        sourceHashCode = 0
        for i in range(len(source)):
            if i < len(target):
                sourceHashCode = (sourceHashCode * 31 + ord(source[i])) % BASE
            else:
                toMinus = ord(source[i - len(target)]) * power
                sourceHashCode = (sourceHashCode - toMinus) % BASE
                sourceHashCode = (sourceHashCode * 31 + ord(source[i])) % BASE
                if sourceHashCode < 0:
                    sourceHashCode = (sourceHashCode + BASE) % BASE

            if i >= len(target) - 1 and sourceHashCode == targetHashCode:
                n = 0
                while source[n + i - len(target) + 1] == target[n]:
                    if n == len(target) - 1:
                        return i - len(target) + 1
                    n += 1
        return -1

17.4.7二刷

class Solution:
    # @param {string} source a source string
    # @param {string} target a target string
    # @return {int} an integer as index
    def strStr2(self, source, target):
        # Write your code here
        BASE = 1000000
        if source is None or target is None:
            return -1
        if not target:
            return 0
            
        m, n = len(source), len(target)
        
        # power
        power = 1
        for i in range(n):
            power = (power * 31) % BASE
        
        # target hash code    
        target_code = 0
        for i in range(n):
            target_code = (target_code * 31 + ord(target[i])) % BASE
        
        # source hash code    
        source_code = 0
        for i in range(m):
            # abc + d
            source_code = (source_code * 31 + ord(source[i])) % BASE
            if i < n - 1:
                continue
            # abcd - a
            if i > n - 1:
                source_code -= (ord(source[i - n]) * power) % BASE
                if source_code < 0:
                    source_code += BASE
            # double check
            if source_code == target_code:
                if source[i - n + 1: i + 1] == target:
                    return i - n + 1
        return -1

  

2 - 二分法


 

459.排序數組中最接近的元素

在一個排好序的數組 A 中找到 i 使得 A[i] 最接近 target(存在重復元素時,可返回任意一個元素的下標)

要點:按九章的二分寫法,left和right在結束時停止在符合判斷條件的分界線處,判斷left和right哪個更接近即可。

class Solution:
    # @param {int[]} A an integer array sorted in ascending order
    # @param {int} target an integer
    # @return {int} an integer
    def closestNumber(self, A, target):
        # Write your code here
        if not A or target is None:
            return -1
            
        left = 0
        right = len(A) - 1
        
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if A[mid] >= target:
                right = mid
            else:
                left = mid
                
        if A[left] == target:
            return left
        elif A[right] == target:
            return right
        elif abs(A[left] - target) <= abs(A[right] - target):
            return left
        else:
            return right

17.4.8二刷

class Solution:
    # @param {int[]} A an integer array sorted in ascending order
    # @param {int} target an integer
    # @return {int} an integer
    def closestNumber(self, A, target):
        # Write your code here
        if not A or target is None:
            return -1
            
        left, right = 0, len(A) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if A[mid] < target:
                left = mid
            else:
                right = mid
                
        return left if abs(target - A[left]) < abs(target - A[right]) else right

-------------------------------------------------------------------------

 

458.目標最后位置

給一個升序數組,找到target最后一次出現的位置,如果沒出現過返回-1

要點:OOXX經典問題,關鍵在於==mid時的判斷

class Solution:
    # @param {int[]} A an integer array sorted in ascending order
    # @param {int} target an integer
    # @return {int} an integer
    def lastPosition(self, A, target):
        # Write your code here
        if not A:
            return -1
        left = 0
        right = len(A) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if A[mid] == target:
                left = mid
            elif A[mid] < target:
                left = mid
            else:
                right = mid
        if A[right] == target:
            return right
        if A[left] == target:
            return left
        return -1

17.4.8二刷

 

class Solution:
    # @param {int[]} A an integer array sorted in ascending order
    # @param {int} target an integer
    # @return {int} an integer
    def lastPosition(self, A, target):
        # Write your code here
        if not A or target is None:
            return -1
            
        left, right = 0, len(A) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if A[mid] <= target:
                left = mid
            else:
                right = mid
                
        if A[right] == target:
            return right
        if A[left] == target:
            return left
            
        return -1

  

-------------------------------------------------------------------------

 

28.搜索二維矩陣

寫出一個高效的算法來搜索 m × n矩陣中的值。

這個矩陣具有以下特性:

  • 每行中的整數從左到右是排序的。
  • 每行的第一個數大於上一行的最后一個整數。

要點:一刷用了兩次二分,二刷可以試試讓元素比較右邊和下邊的元素。

class Solution:
    """
    @param matrix, a list of lists of integers
    @param target, an integer
    @return a boolean, indicate whether matrix contains target
    """
    def searchMatrix(self, matrix, target):
        # write your code here
        if not matrix:
            return False
        m = len(matrix)
        n = len(matrix[0])
        if n == 0:
            return False
        left, right = 0, m - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if matrix[mid][0] < target:
                left = mid
            elif matrix[mid][0] > target:
                right = mid
            else:
                return True
                
        if matrix[right][0] <= target:
            row_num = right
        elif matrix[left][0] <= target:
            row_num = left
        elif left - 1 >= 0 and matrix[left][0] <= target:
            row_num = left - 1
        else:
            return False
            
        left, right = 0, n - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if matrix[row_num][mid] < target:
                left = mid
            elif matrix[row_num][mid] > target:
                right = mid
            else:
                return True
        if matrix[row_num][left] == target or matrix[row_num][right] == target:
            return True
        return False

17.4.8二刷

class Solution:
    """
    @param matrix, a list of lists of integers
    @param target, an integer
    @return a boolean, indicate whether matrix contains target
    """
    def searchMatrix(self, matrix, target):
        # write your code here
        if not matrix or not matrix[0] or target is None:
            return False
            
        row = self.binSearch([a[0] for a in matrix], target)
        col = self.binSearch(matrix[row], target)
        
        if matrix[row][col] == target:
            return True
        return False
        
    def binSearch(self, A, target):
        left, right = 0, len(A) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if A[mid] < target:
                left = mid
            else:
                right = mid
                
        if A[right] <= target:
            return right
        else:
            return left

  

-------------------------------------------------------------------------

585.Maximum Number in Mountain Sequence

Given a mountain sequence of n integers which increase firstly and then decrease, find the mountain top.

要點:mid與左右兩邊比較,確定是上升的還是下降的

class Solution:
    # @param {int[]} nums a mountain sequence which increase firstly and then decrease
    # @return {int} then mountain top
    def mountainSequence(self, nums):
        # Write your code here
        if len(nums) == 1:
            return nums[0]
        left = 0
        right = len(nums) - 1
        
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if nums[mid - 1] < nums[mid] and nums[mid] < nums[mid + 1]:
                left = mid
            elif nums[mid - 1] > nums[mid] and nums[mid] > nums[mid + 1]:
                right = mid
            else:
                return nums[mid]
        return nums[left] if nums[left] > nums[right] else nums[right]
                

17.4.8二刷

class Solution:
    # @param {int[]} nums a mountain sequence which increase firstly and then decrease
    # @return {int} then mountain top
    def mountainSequence(self, nums):
        # Write your code here
        left, right = 0, len(nums) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if nums[mid - 1] < nums[mid]:
                left = mid
            else:
                right = mid
                
        if nums[right] > nums[left]:
            return nums[right]
        return nums[left]

  

-------------------------------------------------------------------------

447.在大數組中查找

給一個按照升序排序的正整數數組。這個數組很大以至於你只能通過固定的接口 ArrayReader.get(k) 來訪問第k個數。並且你也沒有辦法得知這個數組有多大。找到給出的整數target第一次出現的位置。你的算法需要在O(logk)的時間復雜度內完成,k為target第一次出現的位置的下標。如果找不到target,返回-1。

要點:可認為整個數組是無限長,遞增的。使用乘法增加的思想探測index>target的地方。

"""
Definition of ArrayReader:
class ArrayReader:
    def get(self, index):
        # this would return the number on the given index
        # return -1 if index is less than zero.
"""
class Solution:
    # @param {ArrayReader} reader: An instance of ArrayReader 
    # @param {int} target an integer
    # @return {int} an integer
    def searchBigSortedArray(self, reader, target):
        # write your code here
        if not reader or not target:
            return -1
        
        index = 0
        while reader.get(index) < target:
            index = 2 * index + 1 
        
        left = 0
        right = index
        
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if reader.get(mid) >= target:
                right = mid
            else:
                left = mid
        
        if reader.get(left) == target:
            return left
        if reader.get(right) == target:
            return right    
        return -1
        

17.4.8二刷

"""
Definition of ArrayReader:
class ArrayReader:
    def get(self, index):
        # this would return the number on the given index
        # return -1 if index is less than zero.
"""
class Solution:
    # @param {ArrayReader} reader: An instance of ArrayReader 
    # @param {int} target an integer
    # @return {int} an integer
    def searchBigSortedArray(self, reader, target):
        # write your code here
        if not reader or target is None:
            return -1
            
        index = 1
        while reader.get(index) <= target:
            index *= 2
            
        left, right = 0, index
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if reader.get(mid) < target:
                left = mid
            else:
                right = mid
                
        if reader.get(left) == target:
            return left
        if reader.get(right) == target:
            return right
            
        return -1

  

-------------------------------------------------------------------------

159.尋找旋轉排序數組的最小值

假設一個旋轉排序的數組其起始位置是未知的(比如0 1 2 4 5 6 7 可能變成是4 5 6 7 0 1 2)。你需要找到其中最小的元素。你可以假設數組中不存在重復的元素。

要點:mid的判斷

class Solution:
    # @param nums: a rotated sorted array
    # @return: the minimum number in the array
    def findMin(self, nums):
        # write your code here
        if not nums:
            return -1
            
        left = 0
        right = len(nums) - 1
        
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if nums[mid] < nums[right]:
                right = mid
            elif nums[mid] > nums[right]:
                left = mid
        return nums[left] if nums[left] < nums[right] else nums[right]

17.4.9二刷

class Solution:
    # @param nums: a rotated sorted array
    # @return: the minimum number in the array
    def findMin(self, nums):
        # write your code here
        left, right = 0, len(nums) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if nums[left] < nums[mid] < nums[right]:
                return nums[left]
            elif nums[mid] < nums[right]:
                right = mid
            else:
                left = mid
                
        if nums[left] < nums[right]:
            return nums[left]
        return nums[right]

  

-------------------------------------------------------------------------

75.尋找峰值

你給出一個整數數組(size為n),其具有以下特點:

  • 相鄰位置的數字是不同的      //數組不存在“平台”
  • A[0] < A[1] 並且 A[n - 2] > A[n - 1]   //至少存在一個峰

假定P是峰值的位置則滿足A[P] > A[P-1]A[P] > A[P+1],返回數組中任意一個峰值的位置。

要點:根據mid是上升、下降、峰、谷分開判斷

class Solution:
    #@param A: An integers list.
    #@return: return any of peek positions.
    def findPeak(self, A):
        # write your code here
        if not A:
            return -1
        left = 0
        right = len(A) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if mid - 1 < 0:
                left = mid
            elif mid + 1 >= len(A):
                right = mid
            elif A[mid - 1] < A[mid] and A[mid] < A[mid + 1]:
                left = mid
            elif A[mid - 1] > A[mid] and A[mid] > A[mid + 1]:
                right = mid
            elif A[mid - 1] > A[mid] and A[mid] < A[mid + 1]:
                left = mid
            elif A[mid - 1] < A[mid] and A[mid] > A[mid + 1]:
                return mid
                
        if right - 1 >= 0 and right + 1 < len(A) \
            and A[right - 1] < A[right] and A[right] > A[right + 1]:
            return right
        else:
            return left

17.4.8二刷

class Solution:
    #@param A: An integers list.
    #@return: return any of peek positions.
    def findPeak(self, A):
        # write your code here
        left, right = 0, len(A) - 1
        while left - 1 < right:
            mid = (right - left) / 2 + left
            if A[mid - 1] < A[mid] < A[mid + 1]:
                left = mid
            elif A[mid - 1] > A[mid] > A[mid + 1]:
                right = mid
            elif A[mid - 1] > A[mid] < A[mid + 1]:
                right = mid
            else:
                return mid

  

-------------------------------------------------------------------------

74.第一個錯誤的代碼版本

代碼庫的版本號是從 1 到 n 的整數。某一天,有人提交了錯誤版本的代碼,因此造成自身及之后版本的代碼在單元測試中均出錯。請找出第一個錯誤的版本號。

要點:OOXX型找符合條件的最后一個

#class SVNRepo:
#    @classmethod
#    def isBadVersion(cls, id)
#        # Run unit tests to check whether verison `id` is a bad version
#        # return true if unit tests passed else false.
# You can use SVNRepo.isBadVersion(10) to check whether version 10 is a 
# bad version.


class Solution:
    """
    @param n: An integers.
    @return: An integer which is the first bad version.
    """
    def findFirstBadVersion(self, n):
        # write your code here
        if n == 1:
            return 1
        left = 1
        right = n
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if SVNRepo.isBadVersion(mid):
                right = mid
            else:
                left = mid
        if SVNRepo.isBadVersion(left):
            return left
        else:
            return right

17.4.8二刷

#class SVNRepo:
#    @classmethod
#    def isBadVersion(cls, id)
#        # Run unit tests to check whether verison `id` is a bad version
#        # return true if unit tests passed else false.
# You can use SVNRepo.isBadVersion(10) to check whether version 10 is a 
# bad version.
class Solution:
    """
    @param n: An integers.
    @return: An integer which is the first bad version.
    """
    def findFirstBadVersion(self, n):
        # write your code here
        left, right = 1, n
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if SVNRepo.isBadVersion(mid):
                right = mid
            else:
                left = mid
                
        if SVNRepo.isBadVersion(left):
            return left
        else:
            return right

  

-------------------------------------------------------------------------

62.搜索旋轉排序數組

假設有一個排序的按未知的旋轉軸旋轉的數組(比如,0 1 2 4 5 6 7 可能成為4 5 6 7 0 1 2)。給定一個目標值進行搜索,如果在數組中找到目標值返回數組中的索引位置,否則返回-1。你可以假設數組中不存在重復的元素。

要點:多種情況的判斷

class Solution:
    """
    @param A : a list of integers
    @param target : an integer to be searched
    @return : an integer
    """
    def search(self, A, target):
        # write your code here
        if not A or target is None:
            return -1
        left = 0
        right = len(A) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if A[right] < target:
                if A[mid] < A[right]:
                    right = mid
                elif A[mid] > target:
                    right = mid
                else:
                    left = mid
            else:
                if A[mid] < target:
                    left = mid
                elif A[mid] > A[right]:
                    left = mid
                else:
                    right = mid
        
        if A[left] == target:
            return left
        if A[right] == target:
            return right
        return -1
        
        
                

17.4.9二刷

要注意target與left right相等的情況

class Solution:
    """
    @param A : a list of integers
    @param target : an integer to be searched
    @return : an integer
    """
    def search(self, A, target):
        # write your code here
        if not A or target is None:
            return -1
            
        left, right = 0, len(A) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if A[left] < A[right]:
                if A[mid] >= target:
                    right = mid
                else:
                    left = mid
            else:
                if target >= A[left]:
                    if A[left] < A[mid] <= target:
                        left = mid
                    else:
                        right = mid
                else:
                    if target <= A[mid] < A[right]:
                        right = mid
                    else:
                        left = mid
        if A[left] == target:
            return left
        if A[right] == target:
            return right
        return -1

  

-------------------------------------------------------------------------

600. Smallest Rectangle Enclosing Black Pixels

尋找能套住圖中黑色像素的最小矩形。

要點:四次二分法,二刷要優化一下代碼

class Solution(object):
    # @param image {List[List[str]]}  a binary matrix with '0' and '1'
    # @param x, y {int} the location of one of the black pixels
    # @return an integer
    def minArea(self, image, x, y):
        # Write your code here
        m, n = len(image), len(image[0])
        left, right = 0, x
        while left + 1 < right:
            mid = (right - left) / 2 + left
            flag = False
            for i in range(n):
                if image[mid][i] == '1':
                    flag = True
                    break
            if not flag:
                left = mid
            else:
                right = mid
        flag = False
        for i in range(n):
            if image[left][i] == '1':
                flag = True
                break
        if not flag:
            row1 = right
        else:
            row1 = left
            
        left, right = x, m - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            flag = False
            for i in range(n):
                if image[mid][i] == '1':
                    flag = True
                    break
            if not flag:
                right = mid
            else:
                left = mid
        flag = False
        for i in range(n):
            if image[right][i] == '1':
                flag = True
                break
        if not flag:
            row2 = left
        else:
            row2 = right  

        left, right = 0, y
        while left + 1 < right:
            mid = (right - left) / 2 + left
            flag = False
            for i in range(m):
                if image[i][mid] == '1':
                    flag = True
                    break
            
            if flag:
                right = mid
            else:
                left = mid
        flag = False
        for i in range(m):
            if image[i][left] == '1':
                flag = True
                break
        if not flag:
            col1 = right
        else:
            col1 = left
            
        left, right = y, n - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            flag = False
            for i in range(m):
                if image[i][mid] == '1':
                    flag = True
                    break
            if flag:
                left = mid
            else:
                right = mid
        flag = False
        for i in range(m):
            if image[i][right] == '1':
                flag = True
                break
        if not flag:
            col2 = left
        else:
            col2 = right
        return (row2 + 1 - row1) * (col2 + 1 - col1)
        

17.4.9二刷

class Solution(object):
    # @param image {List[List[str]]}  a binary matrix with '0' and '1'
    # @param x, y {int} the location of one of the black pixels
    # @return an integer
    def minArea(self, image, x, y):
        # Write your code here
        m, n = len(image) - 1, len(image[0]) - 1
        row_left = self.binSearch(image, 0, x, 'row', True)
        row_right = self.binSearch(image, x, m, 'row', False)
        col_left = self.binSearch(image, 0, y, 'col', True)
        col_right = self.binSearch(image, y, n, 'col', False)
        return (row_right - row_left + 1) * (col_right - col_left + 1)
        
    def binSearch(self, image, left, right, type, isFindStart):
        while left + 1 < right:
            mid = (right - left) / 2 + left 
            if self.check(image, mid, type, isFindStart):
                right = mid
            else:
                left = mid
                
        if self.check(image, left, type, isFindStart):
            return left if isFindStart else left - 1
        if self.check(image, right, type, isFindStart):
            return right if isFindStart else right - 1
        return len(image) - 1 if type == 'row' else len(image[0]) - 1
            
    def check(self, image, index, type, isFindStart):
        m, n = len(image), len(image[0])
        if type == 'row':
            for i in range(n):
                if image[index][i] == '1':
                    return False ^ isFindStart
            return True ^ isFindStart
        else:
            for i in range(m):
                if image[i][index] == '1':
                    return False ^ isFindStart
            return True ^ isFindStart

  

-------------------------------------------------------------------------

462.Total Occurrence of Target

Given a target number and an integer array sorted in ascending order. Find the total number of occurrences of target in the array.

class Solution:
    # @param {int[]} A an integer array sorted in ascending order
    # @param {int} target an integer
    # @return {int} an integer
    def totalOccurrence(self, A, target):
        # Write your code here
        if not A or not target:
            return 0
            
        left1 = 0
        right1 = len(A) - 1
        while left1 + 1 < right1:
            mid1 = (right1 - left1) / 2 + left1
            if A[mid1] >= target:
                right1 = mid1
            else:
                left1 = mid1
        
        startIndex = -1
        if A[left1] == target:
            startIndex = left1
        elif A[right1] == target:
            startIndex = right1
        if startIndex == -1:
            return 0
        
        left2 = 0
        right2 = len(A) - 1
        while left2 + 1 < right2:
            mid2 = (right2 - left2) / 2 + left2
            if A[mid2] <= target:
                left2 = mid2
            else:
                right2 = mid2
        
        endIndex = -1
        if A[right2] == target:
            endIndex = right2
        elif A[left2] == target:
            endIndex = left2
        if endIndex == -1:
            return 0

        return endIndex - startIndex + 1
        

17.4.9二刷

class Solution:
    # @param {int[]} A an integer array sorted in ascending order
    # @param {int} target an integer
    # @return {int} an integer
    def totalOccurrence(self, A, target):
        # Write your code here
        if not A or target is None:
            return 0
            
        left = self.binSearch(A, target, True)
        right = self.binSearch(A, target, False)
        
        if left == -1:
            return 0
        return right - left + 1
        
    def binSearch(self, A, target, isFirst):
        left, right = 0, len(A) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if isFirst and A[mid] < target:
                left = mid
            elif (not isFirst) and A[mid] <= target:
                left = mid
            else:
                right = mid
        if isFirst:
            if A[left] == target:
                return left
            if A[right] == target:
                return right
        else:
            if A[right] == target:
                return right
            if A[left] == target:
                return left
        return -1

-------------------------------------------------------------------------

254.Drop Eggs

經典的丟雞蛋問題

class Solution:
    # @param {int} n an integer
    # @return {int} an integer
    def dropEggs(self, n):
        # Write your code here
        if not n:
            return 0
            
        left = 1
        right = n
        
        while left + 1 < right:
            mid = (right - left) / 2 + left
            temp = 0.5 * mid ** 2 + 0.5 * mid - n + 1
            if temp >= 0:
                right = mid
            elif temp < 0:
                left = mid
                
        return left if (0.5 * left ** 2 + 0.5 * left - n + 1) > 0 else right

17.4.9二刷

class Solution:
    # @param {int} n an integer
    # @return {int} an integer
    def dropEggs(self, n):
        # Write your code here
        if not n:
            return 0
            
        left, right = 1, n
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if (1 + mid) * mid / 2 >= n:
                right = mid
            else:
                left = mid
                
        if (1 + left) * left / 2 >= n:
            return left
        return right

  

-------------------------------------------------------------------------

14.First Position of Target

find first X in OOXX

class Solution:
    # @param nums: The integer array
    # @param target: Target number to find
    # @return the first position of target in nums, position start from 0
    def binarySearch(self, nums, target):
        # write your code here
        if not nums:
            return -1
        left = 0
        right = len(nums) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if nums[mid] >= target:
                right = mid
            else:
                left = mid
        if nums[left] == target:
            return left
        if nums[right] == target:
            return right
        return -1

17.4.9二刷

class Solution:
    # @param nums: The integer array
    # @param target: Target number to find
    # @return the first position of target in nums, position start from 0 
    def binarySearch(self, nums, target):
        # write your code here
        if not nums or target is None:
            return -1
            
        left, right = 0, len(nums) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if nums[mid] < target:
                left = mid
            else:
                right = mid
        for index in (left, right):        
            if nums[index] == target:
                return index
        return -1

-------------------------------------------------------------------------

460.K Closest Numbers In Sorted Array

find k closest numbers to target in A. A is in ascending order.

class Solution:
    # @param {int[]} A an integer array
    # @param {int} target an integer
    # @param {int} k a non-negative integer
    # @return {int[]} an integer array
    def kClosestNumbers(self, A, target, k):
        # Write your code here
        result = []
        left = 0
        right = len(A) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if A[mid] >= target:
                right = mid
            else:
                left = mid
        
        while len(result) < k:
            if left >= 0 and right <= len(A) - 1:
                if abs(A[left] - target) <= abs(A[right] - target):
                    result.append(A[left])
                    left -= 1
                else:
                    result.append(A[right])
                    right += 1
            elif left >= 0:
                result.append(A[left])
                left -= 1
            else:
                result.append(A[right])
                right += 1
        return result

17.4.9二刷

class Solution:
    # @param {int[]} A an integer array
    # @param {int} target an integer
    # @param {int} k a non-negative integer
    # @return {int[]} an integer array
    def kClosestNumbers(self, A, target, k):
        # Write your code here
        left, right = 0, len(A) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if A[mid] < target:
                left = mid
            else:
                right = mid
                
        result = []
        while len(result) < k:
            while len(result) < k and left >= 0 and right < len(A):
                if abs(target - A[left]) <= abs(target - A[right]):
                    result.append(A[left])
                    left -= 1
                else:
                    result.append(A[right])
                    right += 1
            while len(result) < k and left >= 0:
                result.append(A[left])
                left -= 1
            while len(result) < k and right >= 0:
                result.append(A[right])
                right += 1
        return result

-------------------------------------------------------------------------

414.Divide Two Integers

Divide two integers without using multiplication, division and mod operator.

class Solution(object):
    def divide(self, dividend, divisor):
        INT_MAX = 2147483647
        if divisor == 0:
            return INT_MAX
        neg = dividend > 0 and divisor < 0 or dividend < 0 and divisor > 0
        a, b = abs(dividend), abs(divisor)
        ans, shift = 0, 31
        while shift >= 0:
            if a >= b << shift:
                a -= b << shift
                ans += 1 << shift
            shift -= 1
        if neg:
            ans = - ans
        if ans > INT_MAX:
            return INT_MAX
        return ans

-------------------------------------------------------------------------

414.Divide Two Integers

兩數相除,不許用除號和取余,注意上下溢出。

位運算 >>, <<

17.4.10二刷

class Solution:
    # @param {int} dividend the dividend
    # @param {int} divisor the divisor
    # @return {int} the result
    def divide(self, dividend, divisor):
        # Write your code here
        INT_MAX = 2147483647
        if divisor == 0:
            return INT_MAX if dividend >= 0 else -INT_MAX - 1
            
        neg = dividend >= 0 and divisor < 0 or dividend < 0 and divisor > 0
        
        dividend, divisor = abs(dividend), abs(divisor)
        ans, shift = 0, 31
        while shift >= 0:
            if dividend >= divisor << shift:
                dividend -= divisor << shift
                ans += 1 << shift
            shift -= 1
        if neg:
            ans = -ans
        if ans > INT_MAX:
            ans = INT_MAX
        if ans < -INT_MAX - 1:
            ans = -INT_MAX - 1
        
        return ans

  

 

-------------------------------------------------------------------------

61.search-for-a-range

Given a sorted array of n integers, find the starting and ending position of a given target value.

class Solution:
    """
    @param A : a list of integers
    @param target : an integer to be searched
    @return : a list of length 2, [index1, index2]
    """
    def searchRange(self, A, target):
        # write your code here
        if not A or target is None:
            return [-1, -1]
        left = 0
        right = len(A) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if A[mid] >= target:
                right = mid
            else:
                left = mid
        if A[left] == target:
            leftBound = left
        elif A[right] == target:
            leftBound = right
        else:
            return [-1, -1]
            
        left = 0
        right = len(A) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if A[mid] > target:
                right = mid
            else:
                left = mid
        if A[right] == target:
            rightBound = right
        elif A[left] == target:
            rightBound = left
        
        return [leftBound, rightBound]
        
        

17.4.9二刷

class Solution:
    """
    @param A : a list of integers
    @param target : an integer to be searched
    @return : a list of length 2, [index1, index2]
    """
    def searchRange(self, A, target):
        # write your code here
        if not A or target is None:
            return [-1, -1]
        
        return [self.binSearch(A, target, True), 
                self.binSearch(A, target, False)]
        
    def binSearch(self, A, target, isFirst):
        left, right = 0, len(A) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if isFirst and A[mid] < target:
                left = mid
            elif (not isFirst) and A[mid] <= target:
                left = mid
            else:
                right = mid
        if isFirst:
            if A[left] == target:
                return left
            if A[right] == target:
                return right
        else:
            if A[right] == target:
                return right
            if A[left] == target:
                return left
        return -1

-------------------------------------------------------------------------

38.Search a 2D Matrix II

Search for a value in an m x n matrix, return the occurrence of it.

This matrix has the following properties:

  • Integers in each row are sorted from left to right.
  • Integers in each column are sorted from up to bottom.
  • No duplicate integers in each row or column.
class Solution:
    """
    @param matrix: An list of lists of integers
    @param target: An integer you want to search in matrix
    @return: An integer indicates the total occurrence of target in the given matrix
    """
    def searchMatrix(self, matrix, target):
        # write your code here
        result = 0
        if not matrix or target is None:
            return result
        row = len(matrix) - 1
        col = 0
        while col <= len(matrix[0]) - 1 and row >= 0:
            if matrix[row][col] < target:
                col += 1
            elif matrix[row][col] > target:
                row -= 1
            else:
                result += 1
                col += 1
                row -= 1
        return result

17.4.10二刷:

主對角線方向入手的,加入二分

class Solution:
    """
    @param matrix: An list of lists of integers
    @param target: An integer you want to search in matrix
    @return: An integer indicates the total occurrence of target in the given matrix
    """
    def searchMatrix(self, matrix, target):
        # write your code here
        if not matrix or not matrix[0]:
            return 0
        m, n, result = len(matrix), len(matrix[0]), 0
        row, col = 0, 0
        while row < m and col < n and matrix[row][col] <= target:
            if matrix[row][col] == target:
                result += 1
            else:
                if self.binSearch(matrix, row, col, 'row', target) != -1:
                    result += 1
                if self.binSearch(matrix, col, row, 'col', target) != -1:
                    result += 1
            row += 1
            col += 1
            
        return result
        
    def binSearch(self, matrix, index, start, type, target):
        left, right = start, len(matrix[0]) - 1 if type == 'row' else len(matrix) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if type == 'row' and matrix[index][mid] < target:
                left = mid
            elif type == 'col' and matrix[mid][index] < target:
                left = mid
            else:
                right = mid
        if type == 'row':
            if matrix[index][left] == target:
                return left
            elif matrix[index][right] == target:
                return right
            return -1
        else:
            if matrix[left][index] == target:
                return left
            elif matrix[right][index] == target:
                return right
            return -1
            
        

-------------------------------------------------------------------------  

457.Classical Binary Search

17.4.10二刷

class Solution:
    # @param {int[]} A an integer array sorted in ascending order
    # @param {int} target an integer
    # @return {int} an integer
    def findPosition(self, A, target):
        # Write your code here
        if not A or target is None:
            return -1
            
        left, right = 0, len(A) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if A[mid] < target:
                left = mid
            elif A[mid] == target:
                return mid
            else:
                right = mid
                
        if A[left] == target:
            return left
        if A[right] == target:
            return right
        return -1

-------------------------------------------------------------------------

141.Sqrt(x)

Compute and return the square root of x. return int.

class Solution:
    """
    @param x: An integer
    @return: The sqrt of x
    """
    def sqrt(self, x):
        # write your code here
        if not x:
            return 0
        left = 1
        right = x
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if mid ** 2 <= x:
                left = mid
            else:
                right = mid
        if right ** 2 <= x:
            return right
        if left ** 2 <= x:
            return left
        return 0
                
        

17.4.10二刷

class Solution:
    """
    @param x: An integer
    @return: The sqrt of x
    """
    def sqrt(self, x):
        # write your code here
        left, right = 0, x
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if mid ** 2 >= x:
                right = mid
            else:
                left = mid
        if left ** 2 >= x:
            return left if left ** 2 == x else left - 1
        return right if right ** 2 == x else right - 1

-------------------------------------------------------------------------

617.Maximum Average Subarray

尋找平均值最大的,長度大於等於k的子數組

首先利用二分思想找到潛在的最大值。

在計算前綴和的平均值時,有個巧妙的變化:每一項都減去mid,如果存在一個子數組(長度大於k)的和>0,就是說明存在一個子數組的和大於mid。這樣就變成了傳統的最大子數組問題。

class Solution:
    # @param {int[]} nums an array with positive and negative numbers
    # @param {int} k an integer
    # @return {double} the maximum average
    def maxAverage(self, nums, k):
        # Write your code here
        left, right = min(nums), max(nums)
        prefix = [0] * (len(nums) + 1)
        while right - left >= 1e-6:
            mid, check = (right + left) / 2.0, False
            min_pre = 0
            for i in xrange(1, len(nums) + 1):
                prefix[i] = prefix[i - 1] + nums[i - 1] - mid
                if i >= k and prefix[i] >= min_pre:
                    check = True
                    break
                if i >= k:
                    min_pre = min(min_pre, prefix[i - k + 1])
            if check:
                left = mid
            else:
                right = mid
        return left

17.4.20二刷:

class Solution:
    # @param {int[]} nums an array with positive and negative numbers
    # @param {int} k an integer
    # @return {double} the maximum average
    def maxAverage(self, nums, k):
        # Write your code here
        left, right = min(nums), max(nums)
        prefix = [0] * (len(nums) + 1)
        while right - left > 1e-6:
            mid = (left + right) / 2.0
            min_pre = 0
            check = False
            for i in xrange(1, len(nums) + 1):
                prefix[i] = prefix[i - 1] + nums[i - 1] - mid
                if i >= k and prefix[i] > min_pre:
                    check = True
                    break
                if i >= k:
                    min_pre = min(min_pre, prefix[i - k + 1])
            if check:
                left = mid
            else:
                right = mid
                
        return right

-------------------------------------------------------------------------

586.Sqrt(x) II

注意小於1的時候,不需要double check

17.4.10

class Solution:
    # @param {double} x a double
    # @return {double} the square root of x
    def sqrt(self, x):
        # Write your code here
        if not x:
            return 0
        # binary on result
        left = 0.0
        right = x if x > 1 else 1
        while left + 1e-12< right:
            mid = (right - left) / 2.0 + left
            midSquare = mid ** 2
            if midSquare < x:
                left = mid
            else:
                right = mid
        # or u can return right
        return right

-------------------------------------------------------------------------

160.Find Minimum in Rotated Sorted Array II

Suppose a sorted array is rotated at some pivot unknown to you beforehand.

The array may contain duplicates.

class Solution:
    # @param num: a rotated sorted array
    # @return: the minimum number in the array
    def findMin(self, nums):
        # write your code here
        if not nums:
            return -1
            
        left = 0
        right = len(nums) - 1
        
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if nums[mid] < nums[right]:
                right = mid
            elif nums[mid] > nums[right]:
                left = mid
            else:
                if self.judge(nums, mid, right):
                    right = mid
                else:
                    left = mid
        return nums[left] if nums[left] < nums[right] else nums[right]
        
    def judge(self, A, mid, right):
        temp = None
        for i in A[mid:right + 1]:
            if temp is None or i == temp:
                temp = i
            else:
                return False
        return True

  

17.4.10二刷

class Solution:
    # @param num: a rotated sorted array
    # @return: the minimum number in the array
    def findMin(self, num):
        # write your code here
        left, right = 0, len(num) - 1
        while left + 1 < right:
            if num[left] < num[right]:
                return num[left]
            mid = (right - left) / 2 + left
            if num[mid] > num[left]:
                left = mid
            elif num[mid] < num[right]:
                right = mid
            elif num[mid] == num[right] and num[mid] < num[left]:
                right = mid
            elif num[mid] == num[left] and num[mid] > num[right]:
                left = mid
            else:
                flag = False
                for i in xrange(left, mid + 1):
                    if num[i] != num[left]:
                        flag = True
                        break
                if not flag:
                    left = mid
                else:
                    right = mid
                    
        return num[left] if num[left] < num[right] else num[right]       

-------------------------------------------------------------------------

63.Search in Rotated Sorted Array II

Follow up for Search in Rotated Sorted Array:What if duplicates are allowed?

class Solution:
    """
    @param A : an integer ratated sorted array and duplicates are allowed
    @param target : an integer to be searched
    @return : a boolean
    """
    def search(self, A, target):
        # write your code here
        if not A or target is None:
            return False
        left = 0
        right = len(A) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if A[right] < target:
                if A[mid] < A[right]:
                    right = mid
                elif A[mid] == A[right]:
                    if self.judge(A, left, mid, right):
                        left = mid
                    else:
                        right = mid
                elif A[mid] > target:
                    right = mid
                else:
                    left = mid
            else:
                if A[mid] < target:
                    left = mid
                elif A[mid] > A[right]:
                    left = mid
                elif A[mid] == A[right]:
                    if self.judge(A, left, mid, right):
                        left = mid
                    else:
                        right = mid
                else:
                    right = mid
        
        if A[left] == target:
            return True
        if A[right] == target:
            return True
        return False
        
    def judge(self, A, left, mid, right):
        temp = None
        for i in A[left:mid + 1]:
            if temp is None or i == temp:
                temp = i
            else:
                return False
        return True
        

17.4.10二刷

class Solution:
    """
    @param A : an integer ratated sorted array and duplicates are allowed
    @param target : an integer to be searched
    @return : a boolean
    """
    def search(self, A, target):
        # write your code here
        if not A or target is None:
            return False
            
        left, right = 0, len(A) - 1
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if A[left] < A[right]:
                if target > A[mid]:
                    left = mid
                elif target < A[mid]:
                    right = mid
                else:
                    return True
            else:
                if target < A[right]:
                    if A[mid] < target or A[mid] > A[left]:
                        left = mid
                    elif A[mid] > target:
                        right = target
                    else:
                        return True
                elif target > A[left]:
                    if A[mid] < A[right] or A[mid] > target:
                        right = mid
                    elif A[mid] < target:
                        left = mid
                    else:
                        return True
                else:
                    return True
                    
        if A[left] == target or A[right] == target:
            return True
        return False

-------------------------------------------------------------------------

437.Copy Books

二分答案

class Solution:
    # @param pages: a list of integers
    # @param k: an integer
    # @return: an integer
    def copyBooks(self, pages, k):
        # write your code here
        if not pages or not k:
            return 0
            
        left = max(pages)
        right = sum(pages)
        
        while left + 1 < right:
            mid = (right - left) / 2 + left
            staffCount = self.copyHelper(pages, mid)
            if staffCount <= k:
                right = mid
            else:
                left = mid
        
        if self.copyHelper(pages, left) <= k:
            return left
        else:
            return right
            
    def copyHelper(self, pages, maxWork):
        result = 0
        temp = 0
        for page in pages:
            if temp + page <= maxWork:
                temp += page
            else:
                temp = page
                result += 1
        result += 1
        return result

17.4.10二刷:

class Solution:
    # @param pages: a list of integers
    # @param k: an integer
    # @return: an integer
    def copyBooks(self, pages, k):
        # write your code here
        left, right = 0, sum(pages)
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if self.check(pages, k, mid):
                right = mid
            else:
                left = mid
                
        if self.check(pages, k, left):
            return left
        return right
        
    def check(self, pages, k, cost):
        person = 1
        work = 0
        for p in pages:
            if p > cost:
                return False
            if work + p <= cost:
                work += p
            else:
                person += 1
                work = p
        return person <= k

-------------------------------------------------------------------------

183.Wood Cut

把這些木頭切割成一些長度相同的小段木頭,小段的數目至少為 k,小段越長越好。

class Solution:
    """
    @param L: Given n pieces of wood with length L[i]
    @param k: An integer
    return: The maximum length of the small pieces.
    """
    def woodCut(self, L, k):
        # write your code here
        if not L or not k:
            return 0
            
        left = 1
        right = max(L)
        
        while left + 1 < right:
            mid = (right - left) / 2 + left
            maxNum = self.checkWood(L, mid)
            if maxNum >= k:
                left = mid
            else:
                right = mid
        
        if self.checkWood(L, right) >= k:
            return right
        if self.checkWood(L, left) >= k:
            return left
        return 0
        
    def checkWood(self, L, length):
        result = 0
        for wood in L:
            result += wood / length
        return result

17.4.10二刷

class Solution:
    """
    @param L: Given n pieces of wood with length L[i]
    @param k: An integer
    return: The maximum length of the small pieces.
    """
    def woodCut(self, L, k):
        # write your code here
        if not L:
            return 0
        left, right = 0, max(L)
        while left + 1 < right:
            mid = (right - left) / 2 + left
            if self.check(L, k, mid):
                left = mid
            else:
                right = mid
        if self.check(L, k, right):
            return right
        return left
        
    def check(self, L, k, length):
        result = 0
        for l in L:
            result += l / length
        return result >= k

  

3 - 二叉樹與分治法


597.Subtree with Maximum Average

求最大的子樹平均值

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        this.val = val
        this.left, this.right = None, None
"""


class Solution:
    # @param {TreeNode} root the root of binary tree
    # @return {TreeNode} the root of the maximum average of subtree
    def findSubtree2(self, root):
        # Write your code here
        self.maxAvgNode = None
        self.maxAvg = None
        self.dcFind(root)
        return self.maxAvgNode
        
    def dcFind(self, root):
        if not root:
            return {'size': 0, 'sum': 0}
        
        leftSub = self.dcFind(root.left)
        rightSub = self.dcFind(root.right)
        
        result = {
                    'size': leftSub['size'] + rightSub['size'] + 1,
                    'sum': leftSub['sum'] + rightSub['sum'] + root.val
                  }
        if not self.maxAvgNode or self.maxAvg['sum'] * result['size'] \
            < result['sum'] * self.maxAvg['size']:
            self.maxAvgNode = root
            self.maxAvg = result
        return result

17.4.20二刷:

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        this.val = val
        this.left, this.right = None, None
"""
import sys
class Solution:
    # @param {TreeNode} root the root of binary tree
    # @return {TreeNode} the root of the maximum average of subtree
    def findSubtree2(self, root):
        # Write your code here
        self.max_average = -sys.maxint
        self.result_node = None
        self.helper(root)
        return self.result_node
        
    def helper(self, root):
        if not root:
            return 0, 0
        left_sum, left_count = self.helper(root.left)
        right_sum, right_count = self.helper(root.right)
        if (left_sum + right_sum + root.val) / float(left_count + right_count + 1) > self.max_average:
            self.max_average = (left_sum + right_sum + root.val) / float(left_count + right_count + 1)
            self.result_node = root
        return (left_sum + right_sum + root.val), (left_count + right_count + 1)

-------------------------------------------------------------------------

93.Balanced Binary Tree

檢查一棵樹是不是平衡的

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        self.val = val
        self.left, self.right = None, None
"""


class Solution:
    """
    @param root: The root of binary tree.
    @return: True if this Binary tree is Balanced, or false.
    """
    def isBalanced(self, root):
        # write your code here
        return self.traversalHelper(root)[1]
    
    def traversalHelper(self, root):
        if not root:
            return 0, True
        ldepth, lresult = self.traversalHelper(root.left)
        if lresult:
            rdepth, rresult = self.traversalHelper(root.right)
            if rresult:
                return max(ldepth, rdepth) + 1, abs(ldepth - rdepth) <= 1
            else:
                return max(ldepth, rdepth) + 1, False
        else:
            return ldepth + 1, False

17.4.20二刷:

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        self.val = val
        self.left, self.right = None, None
"""
class Solution:
    """
    @param root: The root of binary tree.
    @return: True if this Binary tree is Balanced, or false.
    """
    def isBalanced(self, root):
        # write your code here
        return False if self.helper(root) == -1 else True
        
        
    def helper(self, root):
        if not root:
            return 0
        left = self.helper(root.left)
        right = self.helper(root.right)
        
        if left == -1 or right == -1:
            return -1
            
        if abs(left - right) > 1:
            return -1
            
        return max(left, right) + 1

-------------------------------------------------------------------------

97.Maximum Depth of Binary Tree

返回一個二叉樹的最大深度

class Solution:
    """
    @param root: The root of binary tree.
    @return: An integer
    """
    def maxDepth(self, root):
        # write your code here
        return self.traversalHelper(root, 0)

    def traversalHelper(self, root, depth):
        if not root:
            return depth
        return max(
                    self.traversalHelper(root.left, depth + 1),
                    self.traversalHelper(root.right, depth + 1)
                    )

17.4.20二刷:

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        self.val = val
        self.left, self.right = None, None
"""
class Solution:
    """
    @param root: The root of binary tree.
    @return: An integer
    """ 
    def maxDepth(self, root):
        # write your code here
        if not root:
            return 0
            
        return max(self.maxDepth(root.left), self.maxDepth(root.right)) + 1

-------------------------------------------------------------------------

480.Binary Tree Paths

找到二叉樹到葉子節點所有路徑

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        self.val = val
        self.left, self.right = None, None
"""
class Solution:
    # @param {TreeNode} root the root of the binary tree
    # @return {List[str]} all root-to-leaf paths
    def binaryTreePaths(self, root):
        # Write your code here
        result = []
        self.traversalHelper(root, result, [])
        return result
    
    def traversalHelper(self, root, result, path):
        if not root:
            return
        path.append(str(root.val))
        if not root.left and not root.right:
            result.append('->'.join(path))
            return
        self.traversalHelper(root.left, result, path[:])
        self.traversalHelper(root.right, result, path[:])

17.4.20二刷

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        self.val = val
        self.left, self.right = None, None
"""
class Solution:
    # @param {TreeNode} root the root of the binary tree
    # @return {List[str]} all root-to-leaf paths
    def binaryTreePaths(self, root):
        # Write your code here
        result = self.helper(root)
        for i in xrange(len(result)):
            result[i] = '->'.join(result[i][::-1])
        return result
        
    def helper(self, root):
        if not root:
            return []
        if (not root.left) and (not root.right):
            return [[str(root.val)]]
            
        child = self.helper(root.left)
        child.extend(self.helper(root.right))
        
        for li in child:
            li.append(str(root.val))
        return child

-------------------------------------------------------------------------

376.Binary Tree Path Sum

找到二叉樹到葉子節點所有路徑,和為target的

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        self.val = val
        self.left, self.right = None, None
"""
class Solution:
    # @param {TreeNode} root the root of binary tree
    # @param {int} target an integer
    # @return {int[][]} all valid paths
    def binaryTreePathSum(self, root, target):
        # Write your code here
        result = []
        self.traverseHelper(root, [], target, result)
        return result
        
    def traverseHelper(self, root, path, target, result):
        if not root:
            return
        path.append(root.val)
        if root.left is None and root.right is None:
            if sum(path) == target:
                result.append(path)
        else:
            self.traverseHelper(root.left, path[:], target, result)
            self.traverseHelper(root.right, path[:], target, result)

17.4.20二刷:

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        self.val = val
        self.left, self.right = None, None
"""
class Solution:
    # @param {TreeNode} root the root of binary tree
    # @param {int} target an integer
    # @return {int[][]} all valid paths
    def binaryTreePathSum(self, root, target):
        # Write your code here
        temp = self.helper(root)
        result = []
        for i in xrange(len(temp)):
            if sum(temp[i]) == target:
                result.append(temp[i])
        return result
        
    def helper(self, root):
        if not root:
            return []
        if (not root.left) and (not root.right):
            return [[root.val]]
            
        child = self.helper(root.left)
        child.extend(self.helper(root.right))
        
        for li in child:
            li.insert(0, root.val)
        return child

-------------------------------------------------------------------------

596.Minimum Subtree

找到二叉樹中的最小子樹

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        this.val = val
        this.left, this.right = None, None
"""
class Solution:
    # @param {TreeNode} root the root of binary tree
    # @return {TreeNode} the root of the minimum subtree
    def findSubtree(self, root):
        # Write your code here
        self.minSum = None
        self.minSumNode = None
        self.dcFind(root)
        return self.minSumNode
    
    def dcFind(self, root):
        if not root:
            return 0
        
        result = self.dcFind(root.left) + self.dcFind(root.right) + root.val
        
        if not self.minSumNode or self.minSum > result:
            self.minSum = result
            self.minSumNode = root
        
        return result

17.4.20二刷:

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        this.val = val
        this.left, this.right = None, None
"""
class Solution:
    # @param {TreeNode} root the root of binary tree
    # @return {TreeNode} the root of the minimum subtree
    def findSubtree(self, root):
        # Write your code here
        self.min_sum = sys.maxint
        self.result_node = None
        self.helper(root)
        return self.result_node
        
    def helper(self, root):
        if not root:
            return 0
        left_sum = self.helper(root.left)
        right_sum = self.helper(root.right)
        if left_sum + right_sum + root.val < self.min_sum:
            self.min_sum = left_sum + right_sum + root.val
            self.result_node = root
        return left_sum + right_sum + root.val

-------------------------------------------------------------------------

595.Binary Tree Longest Consecutive Sequence

尋找二叉樹中從上至下方向中的最長的連續序列,返回長度

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    # @param {TreeNode} root the root of binary tree
    # @return {int} the length of the longest consecutive sequence path
    def longestConsecutive(self, root):
        # Write your code here
        self.maxLength = 0
        self.dcFind(root)
        return self.maxLength
        
    def dcFind(self, root):
        if not root:
            return {
                        'len': 0,
                        'val': -1
                    }
        
        left = self.dcFind(root.left)
        right = self.dcFind(root.right)
        
        result = {'len': 1,'val':root.val}
        if left['val'] == root.val + 1:
            result['len'] = left['len'] + 1
        if right['val'] == root.val + 1 and result['len'] < right['len'] + 1:
            result['len'] = right['len'] + 1
        if result['len'] > self.maxLength:
            self.maxLength = result['len']
        return result

17.4.20二刷

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    # @param {TreeNode} root the root of binary tree
    # @return {int} the length of the longest consecutive sequence path
    def longestConsecutive(self, root):
        # Write your code here
        self.max_len = 0
        self.helper(root)
        return self.max_len
        
    def helper(self, root):
        if not root:
            return 0
        left, right, result = 0, 0, 1
        if root.left:
            left = self.helper(root.left)
            if root.val + 1 == root.left.val:
                result += left
        if root.right:
            right = self.helper(root.right)
            if root.val + 1 == root.right.val:
                result = max(right + 1, result)
        self.max_len = max(self.max_len, left, right, result)
        return result

-------------------------------------------------------------------------

453.Flatten Binary Tree to Linked List

將一個二叉樹轉換為鏈表

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        this.val = val
        this.left, this.right = None, None
"""


class Solution:
    # @param root: a TreeNode, the root of the binary tree
    # @return: nothing
    def flatten(self, root):
        # write your code here
        if not root:
            return
        self.traversalHelper(root)

    def traversalHelper(self, root):
        if root.right:
            self.traversalHelper(root.right)
        if root.left:
            self.traversalHelper(root.left)
            leftStart = root.left
            leftEnd = root.left
            while leftEnd.right:
                leftEnd = leftEnd.right
            root.left = None
            rightStart = root.right
            root.right = leftStart
            leftEnd.right = rightStart

17.4.20二刷:

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        this.val = val
        this.left, this.right = None, None
"""
class Solution:
    # @param root: a TreeNode, the root of the binary tree
    # @return: nothing
    def flatten(self, root):
        # write your code here
        if not root:
            return
        self.flatten(root.left)
        self.flatten(root.right)
        temp = root.right
        root.right = root.left
        root.left = None
        cur = root
        while cur.right:
            cur = cur.right
        cur.right = temp

-------------------------------------------------------------------------

 578.Lowest Common Ancestor III

找兩個節點的最低公共祖先

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        this.val = val
        this.left, this.right = None, None
"""


class Solution:
    """
    @param {TreeNode} root The root of the binary tree.
    @param {TreeNode} A and {TreeNode} B two nodes
    @return Return the LCA of the two nodes.
    """
    def lowestCommonAncestor3(self, root, A, B):
        # write your code here
        result = self.dcHelper(root, A, B)
        return result['result']

    def dcHelper(self, root, A, B):
        if not root:
            return {
                        'foundA': False,
                        'foundB': False,
                        'result': None
                    }
        else:
            left = self.dcHelper(root.left, A, B)
            right = self.dcHelper(root.right, A, B)
            result = {
                            'foundA': left['foundA'] or right['foundA'],
                            'foundB': left['foundB'] or right['foundB'],
                            'result': left['result'] if left['result'] else right['result']
                      }
            if root == A:
                result['foundA'] = True
            if root == B:
                result['foundB'] = True
            if result['result'] is None and result['foundA'] and result['foundB']:
                result['result'] = root
            return result

17.4.21二刷:

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        this.val = val
        this.left, this.right = None, None
"""
class Solution:
    """
    @param {TreeNode} root The root of the binary tree.
    @param {TreeNode} A and {TreeNode} B two nodes
    @return Return the LCA of the two nodes.
    """ 
    def lowestCommonAncestor3(self, root, A, B):
        # write your code here
        pathA = self.get_path(root, A, [root])
        pathB = self.get_path(root, B, [root])
        if not pathA or not pathB:
            return 
        for i in range(min(len(pathA), len(pathB))):
            if pathA[i] != pathB[i]:
                return pathA[i - 1]
        return pathA[-1] if len(pathA) < len(pathB) else pathB[-1]
        
    def get_path(self, root, target, path):
        if not root:
            return []
        if root == target:
            return path
        for node in (root.left, root.right):
            path.append(node)
            result = self.get_path(node, target, path)
            if result:
                return result
            path.pop()

-------------------------------------------------------------------------

95.Validate Binary Search Tree

驗證是不是二叉查找樹,左子樹嚴格小於根,右子樹嚴格大於根

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        self.val = val
        self.left, self.right = None, None
"""
class Solution:
    """
    @param root: The root of binary tree.
    @return: True if the binary tree is BST, or false
    """  
    def isValidBST(self, root):
        result = self.dcHelper(root)
        return result['result']
        
    def dcHelper(self, root):
        if not root:
            return {'result': True, 'min': None, 'max': None}
        else:
            left = self.dcHelper(root.left)
            right = self.dcHelper(root.right)
            if not left['result'] or not right['result']:
                return {'result': False, 'min': None, 'max': None}
            elif (left['max'] and left['max'] >= root.val) \
                or (right['min'] and right['min'] <= root.val):
                return {'result': False, 'min': None, 'max': None}
            else:
                return {
                            'result': True, 
                            'min': left['min'] if left['min'] else root.val, 
                            'max': right['max'] if right['max'] else root.val
                        }

17.4.21二刷:

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        self.val = val
        self.left, self.right = None, None
"""
import sys
class Solution:
    """
    @param root: The root of binary tree.
    @return: True if the binary tree is BST, or false
    """  
    def isValidBST(self, root):
        # write your code here
        self.result = True
        self.testBST(root)
        return self.result
        
    def testBST(self, root):
        if not root:
            return sys.maxint, -sys.maxint
        lsmall, lbig = self.testBST(root.left)
        rsmall, rbig = self.testBST(root.right)
        if lbig >= root.val or rsmall <= root.val:
            self.result = False
        return min(lsmall, root.val), max(rbig, root.val)

-------------------------------------------------------------------------

474.Lowest Common Ancestor II

最小公共祖先,有指向父節點的指針

"""
Definition of ParentTreeNode:
class ParentTreeNode:
    def __init__(self, val):
        self.val = val
        self.parent, self.left, self.right = None, None, None
"""
class Solution:
    """
    @param root: The root of the tree
    @param A and B: Two node in the tree
    @return: The lowest common ancestor of A and B
    """ 
    def lowestCommonAncestorII(self, root, A, B):
        # Write your code here
        parentA = []
        while A:
            parentA.append(A)
            A = A.parent
        while B:
            if B in parentA:
                return B
            B = B.parent

17.4.21二刷:

"""
Definition of ParentTreeNode:
class ParentTreeNode:
    def __init__(self, val):
        self.val = val
        self.parent, self.left, self.right = None, None, None
"""
class Solution:
    """
    @param root: The root of the tree
    @param A and B: Two node in the tree
    @return: The lowest common ancestor of A and B
    """ 
    def lowestCommonAncestorII(self, root, A, B):
        # Write your code here
        pA = self.get_parent_list(A)
        pB = self.get_parent_list(B)
        if not pA or not pB:
            return
        for i in range(min(len(pA), len(pB))):
            if pA[i] != pB[i]:
                return pA[i - 1]
        return pA[-1] if len(pA) < len(pB) else pB[-1]
        
    def get_parent_list(self, node):
        result = []
        cur = node
        while cur:
            result.append(cur)
            cur = cur.parent
        return result[::-1]

-------------------------------------------------------------------------

246.Binary Tree Path Sum II

任意位置開始和結束,只能從上往下

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        self.val = val
        self.left, self.right = None, None
"""
class Solution:
    # @param {TreeNode} root the root of binary tree
    # @param {int} target an integer
    # @return {int[][]} all valid paths
    def binaryTreePathSum2(self, root, target):
        # Write your code here
        self.result = []
        if target is None:
            return self.result
        self.dcHelper(root, target)
        return self.result
        
    def dcHelper(self, root, target):
        dcResult = []
        if not root:
            return dcResult
        temp = self.dcHelper(root.left, target)
        temp.extend(self.dcHelper(root.right, target))
        #dcResult.extend(temp)
        temp.append([])
        for path in temp:
            path.insert(0, root.val)
            if sum(path) == target:
                self.result.append(path[:])
            dcResult.append(path[:])
        return dcResult

17.4.21二刷:

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        self.val = val
        self.left, self.right = None, None
"""
class Solution:
    # @param {TreeNode} root the root of binary tree
    # @param {int} target an integer
    # @return {int[][]} all valid paths
    def binaryTreePathSum2(self, root, target):
        # Write your code here
        self.result = []
        paths = self.helper(root, target)
        return self.result
        
    def helper(self, root, target):
        if not root:
            return []
        result = self.helper(root.left, target)
        result.extend(self.helper(root.right, target))
        for i in xrange(len(result)):
            result[i].append(root.val)
        result.append([root.val])
        for i in xrange(len(result)):
            if result[i] and sum(result[i]) == target:
                self.result.append(result[i][::-1])
        return result

-------------------------------------------------------------------------

68.Binary Tree Postorder Traversal

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        self.val = val
        self.left, self.right = None, None
"""


class Solution:
    """
    @param root: The root of binary tree.
    @return: Postorder in ArrayList which contains node values.
    """
    def postorderTraversal(self, root):
        # write your code here
        result = []
        if not root:
            return result
        now = root
        markNode = None
        stack = []
        while stack or now:
            while now:
                stack.append(now)
                now = now.left
            now = stack.pop()
            if not now.right or now.right is markNode:
                result.append(now.val)
                markNode = now
                now = None
            else:
                stack.append(now)
                now = now.right
        return result

17.4.21二刷,遞歸版本,要背過非遞歸的

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        self.val = val
        self.left, self.right = None, None
"""


class Solution:
    """
    @param root: The root of binary tree.
    @return: Postorder in ArrayList which contains node values.
    """
    def postorderTraversal(self, root):
        # write your code here
        self.result = []
        self.helper(root)
        return self.result
        
    def helper(self, root):
        if not root:
            return
        self.helper(root.left)
        self.helper(root.right)
        self.result.append(root.val)

-------------------------------------------------------------------------

67.Binary Tree Inorder Traversal

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        self.val = val
        self.left, self.right = None, None
"""


class Solution:
    """
    @param root: The root of binary tree.
    @return: Inorder in ArrayList which contains node values.
    """
    def inorderTraversal(self, root):
        # write your code here
        result = []
        if root is None:
            return result
        stack = []
        now = root
        while now or stack:
            while now:
                stack.append(now)
                now = now.left
            now = stack.pop()
            result.append(now.val)
            now = now.right
        return result

17.4.21二刷:

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        self.val = val
        self.left, self.right = None, None
"""


class Solution:
    """
    @param root: The root of binary tree.
    @return: Inorder in ArrayList which contains node values.
    """
    def inorderTraversal(self, root):
        # write your code here
        self.result = []
        self.helper(root)
        return self.result
        
    def helper(self, root):
        if not root:
            return
        self.helper(root.left)
        self.result.append(root.val)
        self.helper(root.right)

-------------------------------------------------------------------------

66.Binary Tree Preorder Traversal

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        self.val = val
        self.left, self.right = None, None
"""


class Solution:
    """
    @param root: The root of binary tree.
    @return: Preorder in ArrayList which contains node values.
    """
    def preorderTraversal(self, root):
        # write your code here
        result = []
        self.traversalHelper(root, result)
        return result

    def traversalHelper(self, root, result):
        if not root:
            return
        result.append(root.val)
        self.traversalHelper(root.left, result)
        self.traversalHelper(root.right, result)

17.4.21二刷:

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        self.val = val
        self.left, self.right = None, None
"""


class Solution:
    """
    @param root: The root of binary tree.
    @return: Preorder in ArrayList which contains node values.
    """
    def preorderTraversal(self, root):
        # write your code here
        self.result = []
        self.helper(root)
        return self.result
        
    def helper(self, root):
        if not root:
            return
        self.result.append(root.val)
        self.helper(root.left)
        self.helper(root.right)

-------------------------------------------------------------------------

4 - 寬度優先搜索

7.binary-tree-serialization

設計一個算法,並編寫代碼來序列化和反序列化二叉樹。

 1 """
 2 Definition of TreeNode:
 3 class TreeNode:
 4     def __init__(self, val):
 5         self.val = val
 6         self.left, self.right = None, None
 7 """
 8 class Solution:
 9 
10     '''
11     @param root: An object of TreeNode, denote the root of the binary tree.
12     This method will be invoked first, you should design your own algorithm 
13     to serialize a binary tree which denote by a root node to a string which
14     can be easily deserialized by your own "deserialize" method later.
15     '''
16     def serialize(self, root):
17         # write your code here
18         result = []
19         if not root:
20             return ','.join(result)
21             
22         queue = [root]
23         while queue:
24             node = queue.pop(0)
25             result.append(str(node.val) if node else '#')
26             if node:
27                 queue.append(node.left)
28                 queue.append(node.right)
29         return ','.join(result)
30         
31     '''
32     @param data: A string serialized by your serialize method.
33     This method will be invoked second, the argument data is what exactly
34     you serialized at method "serialize", that means the data is not given by
35     system, it's given by your own serialize method. So the format of data is
36     designed by yourself, and deserialize it here as you serialize it in 
37     "serialize" method.
38     '''
39     def deserialize(self, data):
40         # write your code here
41         root = None
42         if not data:
43             return root
44         data = data.split(',')
45         
46         root = TreeNode(int(data[0]))
47         queue = [root]
48         isLeftChild = True
49         index = 0
50         
51         for val in data[1:]:
52             if val is not '#':
53                 node = TreeNode(int(val))
54                 if isLeftChild:
55                     queue[index].left = node
56                 else:
57                     queue[index].right = node
58                 queue.append(node)
59 
60             if not isLeftChild:
61                 index += 1
62             isLeftChild = not isLeftChild
63 
64         return root
65                 
View Code

17.5.29二刷

序列化時加入父節點信息和左右信息

 1 """
 2 Definition of TreeNode:
 3 class TreeNode:
 4     def __init__(self, val):
 5         self.val = val
 6         self.left, self.right = None, None
 7 """
 8 import json
 9 class Solution:
10 
11     '''
12     @param root: An object of TreeNode, denote the root of the binary tree.
13     This method will be invoked first, you should design your own algorithm 
14     to serialize a binary tree which denote by a root node to a string which
15     can be easily deserialized by your own "deserialize" method later.
16     '''
17     def serialize(self, root):
18         # write your code here
19         result = []
20         queue = [[None, None, root]] if root else []
21         i = -1
22         while queue:
23             node = queue.pop(0)
24             result.append([node[0], node[1], node[2].val])
25             i += 1
26             if node[2].left:
27                 queue.append([i, 0, node[2].left])
28             if node[2].right:
29                 queue.append([i, 1, node[2].right])
30         return json.dumps(result)
31 
32     '''
33     @param data: A string serialized by your serialize method.
34     This method will be invoked second, the argument data is what exactly
35     you serialized at method "serialize", that means the data is not given by
36     system, it's given by your own serialize method. So the format of data is
37     designed by yourself, and deserialize it here as you serialize it in 
38     "serialize" method.
39     '''
40     def deserialize(self, data):
41         # write your code here
42         result = json.loads(data)
43         for i in range(len(result)):
44             temp = result[i]
45             result[i] = TreeNode(result[i][2])
46             if not temp[0] is None:
47                 if temp[1] == 0:
48                     result[temp[0]].left = result[i]
49                 if temp[1] == 1:
50                     result[temp[0]].right = result[i]
51         return result[0] if result else None
View Code

-------------------------------------------------------------------------

 

70.binary-tree-level-order-traversal-ii

給出一棵二叉樹,返回其節點值從底向上的層次序遍歷(按從葉節點所在層到根節點所在的層遍歷,然后逐層從左往右遍歷)

 1 """
 2 Definition of TreeNode:
 3 class TreeNode:
 4     def __init__(self, val):
 5         self.val = val
 6         self.left, self.right = None, None
 7 """
 8 
 9 
10 class Solution:
11     """
12     @param root: The root of binary tree.
13     @return: buttom-up level order in a list of lists of integers
14     """
15     def levelOrderBottom(self, root):
16         # write your code here
17         result = []
18         if not root:
19             return result
20         queue = [root]
21         while queue:
22             size = len(queue)
23             level = []
24             for i in range(size):
25                 node = queue.pop(0)
26                 level.append(node.val)
27                 if node.left:
28                     queue.append(node.left)
29                 if node.right:
30                     queue.append(node.right)
31             result.append(level)
32         return result[::-1]
View Code

17.5.29二刷

 1 """
 2 Definition of TreeNode:
 3 class TreeNode:
 4     def __init__(self, val):
 5         self.val = val
 6         self.left, self.right = None, None
 7 """
 8 
 9 
10 class Solution:
11     """
12     @param root: The root of binary tree.
13     @return: buttom-up level order in a list of lists of integers
14     """
15     def levelOrderBottom(self, root):
16         # write your code here
17         if not root:
18             return []
19         result = []
20         queue = [root]
21         while queue:
22             size = len(queue)
23             tmp = []
24             for i in range(size):
25                 node = queue.pop(0)
26                 tmp.append(node.val)
27                 if node.left:
28                     queue.append(node.left)
29                 if node.right:
30                     queue.append(node.right)
31             result.append(tmp)
32         return result[::-1]
View Code

-------------------------------------------------------------------------

 

71.binary-tree-zigzag-level-order-traversal

給出一棵二叉樹,返回其節點值的鋸齒形層次遍歷(先從左往右,下一層再從右往左,層與層之間交替進行)

 1 """
 2 Definition of TreeNode:
 3 class TreeNode:
 4     def __init__(self, val):
 5         self.val = val
 6         self.left, self.right = None, None
 7 """
 8 
 9 
10 class Solution:
11     """
12     @param root: The root of binary tree.
13     @return: A list of list of integer include 
14              the zig zag level order traversal of its nodes' values
15     """
16     def zigzagLevelOrder(self, root):
17         # write your code here
18         result = []
19         if not root:
20             return result
21         queue = [root]
22         flag = True
23         while queue:
24             size = len(queue)
25             level = []
26             for i in range(size):
27                 node = queue.pop(0)
28                 level.append(node.val)
29                 if node.left:
30                     queue.append(node.left)
31                 if node.right:
32                     queue.append(node.right)
33             result.append(level if flag else level[::-1])
34             flag = not flag
35         return result
View Code

17.5.29二刷

 1 """
 2 Definition of TreeNode:
 3 class TreeNode:
 4     def __init__(self, val):
 5         self.val = val
 6         self.left, self.right = None, None
 7 """
 8 
 9 
10 class Solution:
11     """
12     @param root: The root of binary tree.
13     @return: A list of list of integer include 
14              the zig zag level order traversal of its nodes' values
15     """
16     def zigzagLevelOrder(self, root):
17         # write your code here
18         result = []
19         if not root:
20             return result
21         queue = [root]
22         reverse = False
23         while queue:
24             size = len(queue)
25             tmp = []
26             for i in range(size):
27                 node = queue.pop(0)
28                 tmp.append(node.val)
29                 if node.left:
30                     queue.append(node.left)
31                 if node.right:
32                     queue.append(node.right)
33             result.append(tmp if not reverse else tmp[::-1])
34             reverse = not reverse
35         return result
View Code

-------------------------------------------------------------------------

 

120.word-ladder

給出兩個單詞(start和end)和一個字典,找到從start到end的最短轉換序列

比如:

  1. 每次只能改變一個字母。
  2. 變換過程中的中間單詞必須在字典中出現。
 1 class Solution:
 2     # @param start, a string
 3     # @param end, a string
 4     # @param dict, a set of string
 5     # @return an integer
 6     def ladderLength(self, start, end, dict):
 7         # write your code here
 8         queue = [start]
 9         visited = set([start])
10         level = 0
11         dict.add(start)
12         dict.add(end)
13         
14         while queue:
15             level += 1
16             size = len(queue)
17             for i in range(size):
18                 word = queue.pop(0)
19                 if word == end:
20                     return level
21                 for item in self.find_neighbors(word, dict):
22                     if item in visited:
23                         continue
24                     visited.add(item)
25                     queue.append(item)
26         
27     def find_neighbors(self, word, dict):
28         result = []
29         for i in range(len(word)):
30             code = ord(word[i])
31             for j in range(97, 123):
32                 if j == code:
33                     continue
34                 string = word[:i] + chr(j) + word[i + 1:]
35                 if string in dict:
36                     result.append(string)
37         return result
View Code

17.5.29二刷

 1 class Solution:
 2     # @param start, a string
 3     # @param end, a string
 4     # @param dict, a set of string
 5     # @return an integer
 6     def ladderLength(self, start, end, dict):
 7         # write your code here
 8         if start == end:
 9             return 1
10         dict = set(dict)
11         visited = set([start])
12         queue = [start]
13         step = 0
14         while queue:
15             step += 1
16             size = len(queue)
17             for i in range(size):
18                 word = queue.pop(0)
19                 for w in self.findNeighbors(word):
20                     if w == end:
21                         return step + 1 
22                     if w in dict and w not in visited:
23                         visited.add(w)
24                         queue.append(w)
25         return 0
26         
27         
28     def findNeighbors(self, word):
29         result = []
30         for i in range(len(word)):
31             for j in range(97, 123):
32                 result.append(word[:i] + chr(j) + word[i + 1:])
33         return result
View Code

-------------------------------------------------------------------------

 

127.topological-sorting

給定一個有向圖,圖節點的拓撲排序被定義為:

  • 對於每條有向邊A--> B,則A必須排在B之前  
  • 拓撲排序的第一個節點可以是任何在圖中沒有其他節點指向它的節點  

找到給定圖的任一拓撲排序

 1 # Definition for a Directed graph node
 2 # class DirectedGraphNode:
 3 #     def __init__(self, x):
 4 #         self.label = x
 5 #         self.neighbors = []
 6 
 7 class Solution:
 8     """
 9     @param graph: A list of Directed graph node
10     @return: A list of graph nodes in topological order.
11     """
12     def topSort(self, graph):
13         # write your code here
14         result = []
15         if not graph:
16             return result
17             
18         for node in graph:
19             for n in node.neighbors:
20                 if hasattr(n, 'in_degree'):
21                     n.in_degree += 1
22                 else:
23                     n.in_degree = 1
24         
25         queue = []            
26         for node in graph:
27             if not hasattr(node, 'in_degree') or node.in_degree == 0:
28                 queue.append(node)
29         while queue:
30             node = queue.pop(0)
31             result.append(node)
32             for n in node.neighbors:
33                 n.in_degree -= 1
34                 if n.in_degree == 0:
35                     queue.append(n)
36         return result
View Code

17.5.29二刷

 1 # Definition for a Directed graph node
 2 # class DirectedGraphNode:
 3 #     def __init__(self, x):
 4 #         self.label = x
 5 #         self.neighbors = []
 6 
 7 class Solution:
 8     """
 9     @param graph: A list of Directed graph node
10     @return: A list of graph nodes in topological order.
11     """
12     def topSort(self, graph):
13         # write your code here
14         map = {}
15         for node in graph:
16             map[node.label] = {'parents':0, \
17                 'children':[n.label for n in node.neighbors], 
18                 'node':node}
19         for node in graph:
20             for c in map[node.label]['children']:
21                 map[c]['parents'] += 1
22                 
23         queue = [key for key in map if map[key]['parents'] == 0]
24         result = []
25         while queue:
26             node = queue.pop(0)
27             result.append(map[node]['node'])
28             for c in map[node]['children']:
29                 map[c]['parents'] -= 1
30                 if map[c]['parents'] == 0:
31                     queue.append(c)
32                     
33         return result
View Code

-------------------------------------------------------------------------

 

618.search-graph-nodes

Given a undirected graph, a node and a target, return the nearest node to given node which value of it is target, return NULL if you can't find.

 1 # Definition for a undirected graph node
 2 # class UndirectedGraphNode:
 3 #     def __init__(self, x):
 4 #         self.label = x
 5 #         self.neighbors = []
 6 
 7 class Solution:
 8     # @param {UndirectedGraphNode[]} graph a list of undirected graph node
 9     # @param {dict} values a dict, <UndirectedGraphNode, (int)value>
10     # @param {UndirectedGraphNode} node an Undirected graph node
11     # @param {int} target an integer
12     # @return {UndirectedGraphNode} a node
13     def searchNode(self, graph, values, node, target):
14         # Write your code here
15         if not graph or not node or not values or target is None:
16             return None
17         queue = [node]
18         while queue:
19             nd = queue.pop(0)
20             if values[nd] == target:
21                 return nd
22             for neighbor in nd.neighbors:
23                 queue.append(neighbor)
24         return None
View Code

17.5.30二刷

 1 # Definition for a undirected graph node
 2 # class UndirectedGraphNode:
 3 #     def __init__(self, x):
 4 #         self.label = x
 5 #         self.neighbors = []
 6 
 7 class Solution:
 8     # @param {UndirectedGraphNode[]} graph a list of undirected graph node
 9     # @param {dict} values a dict, <UndirectedGraphNode, (int)value>
10     # @param {UndirectedGraphNode} node an Undirected graph node
11     # @param {int} target an integer
12     # @return {UndirectedGraphNode} a node
13     def searchNode(self, graph, values, node, target):
14         # Write your code here
15         queue = [node]
16         visited = set([node])
17         while queue:
18             node = queue.pop(0)
19             if values[node] == target:
20                 return node
21             for child in node.neighbors:
22                 if child not in visited:
23                     visited.add(child)
24                     queue.append(child)
View Code

-------------------------------------------------------------------------

 

616.course-schedule-ii

拓撲排序

 1 class Solution:
 2     # @param {int} numCourses a total of n courses
 3     # @param {int[][]} prerequisites a list of prerequisite pairs
 4     # @return {int[]} the course order
 5     def findOrder(self, numCourses, prerequisites):
 6         # Write your code here
 7         nodes = {}
 8         queue = []
 9         result = []
10         for i in range(numCourses):
11             nodes[i] = {
12                     'pre' : 0,
13                     'next' : []
14                 }
15         for p in prerequisites:
16             nodes[p[0]]['pre'] += 1
17             nodes[p[1]]['next'].append(p[0])
18             
19         for key in nodes:
20             if nodes[key]['pre'] == 0:
21                 queue.append(key)
22                 
23         while queue:
24             node = queue.pop(0)
25             result.append(node)
26             for next in nodes[node]['next']:
27                 nodes[next]['pre'] -= 1
28                 if nodes[next]['pre'] == 0:
29                     queue.append(next)
30                     
31         return result if len(result) == numCourses else []
32                 
33         
View Code

17.5.30二刷

 1 class Solution:
 2     # @param {int} numCourses a total of n courses
 3     # @param {int[][]} prerequisites a list of prerequisite pairs
 4     # @return {int[]} the course order
 5     def findOrder(self, numCourses, prerequisites):
 6         # Write your code here
 7         graph = {}
 8         queue = []
 9         result = []
10         for i in range(numCourses):
11             graph[i] = {
12                     'pre' : 0,
13                     'next' : []
14                 }
15         for p in prerequisites:
16             graph[p[0]]['pre'] += 1
17             graph[p[1]]['next'].append(p[0])
18         for i in graph:
19             if graph[i]['pre'] == 0:
20                 queue.append(i)
21                 
22         # bfs
23         while queue:
24             node = queue.pop(0)
25             result.append(node)
26             for child in graph[node]['next']:
27                 graph[child]['pre'] -= 1
28                 if graph[child]['pre'] == 0:
29                     queue.append(child)
30         return result if len(result) == numCourses else []
31         
View Code

-------------------------------------------------------------------------

 

611.knight-shortest-path

Given a knight in a chessboard (a binary matrix with 0 as empty and 1 as barrier) with a source position, find the shortest path to a destination position, return the length of the route. 
Return -1 if knight can not reached.

 1 # Definition for a point.
 2 # class Point:
 3 #     def __init__(self, a=0, b=0):
 4 #         self.x = a
 5 #         self.y = b
 6 
 7 class Solution:
 8     # @param {boolean[][]} grid a chessboard included 0 (False) and 1 (True)
 9     # @param {Point} source a point
10     # @param {Point} destination a point
11     # @return {int} the shortest path 
12     def shortestPath(self, grid, source, destination):
13         # Write your code here
14         row = len(grid)
15         if row == 0:
16             return 0
17         col = len(grid[0])
18         
19         jump = -1
20         visited = [[False for i in range(col)] for j in range(row)]
21         nbrow = [1, -1, 2, 2, 1, -1, -2, -2]
22         nbcol = [2, 2, 1, -1, -2, -2, 1, -1]
23         queue = [(source.x, source.y)]
24         while queue:
25             size = len(queue)
26             jump += 1
27             for s in range(size):
28                 (x, y) = queue.pop(0)
29                 if (x, y) == (destination.x, destination.y):
30                     return jump
31                 visited[x][y] = True
32                 for i in range(8):
33                     nx = x + nbrow[i]
34                     ny = y + nbcol[i]
35                     if nx >= 0 and nx < row and ny >= 0 and ny < col \
36                         and (not grid[nx][ny]) and (not visited[nx][ny]) \
37                         and ((nx, ny) not in queue): #最后一個條件非常重要,重復元素不入隊
38                         queue.append((nx, ny))
39         return -1
40         
41         
42         
View Code

17.5.30二刷

 1 # Definition for a point.
 2 # class Point:
 3 #     def __init__(self, a=0, b=0):
 4 #         self.x = a
 5 #         self.y = b
 6 
 7 class Solution:
 8     # @param {boolean[][]} grid a chessboard included 0 (False) and 1 (True)
 9     # @param {Point} source a point
10     # @param {Point} destination a point
11     # @return {int} the shortest path 
12     def shortestPath(self, grid, source, destination):
13         # Write your code here
14         m, n = len(grid), len(grid[0])
15         visited = [[0] * n for i in range(m)]
16         visited[source.x][source.y] = 1
17         queue = [source]
18         step = -1
19         axis_x = [1, 1, -1, -1, 2, 2, -2, -2]
20         axis_y = [2, -2, 2, -2, 1, -1, 1, -1]
21         while queue:
22             size = len(queue)
23             step += 1
24             for i in range(size):
25                 pos = queue.pop(0)
26                 if pos.x == destination.x and pos.y == destination.y:
27                     return step
28                 for j in range(len(axis_x)):
29                     n_x, n_y = pos.x + axis_x[j], pos.y + axis_y[j]
30                     if self.checkPos(grid, visited, n_x, n_y):
31                         visited[n_x][n_y] = 1
32                         queue.append(Point(n_x, n_y))
33         return -1
34                     
35     def checkPos(self, grid, visited, x, y):
36         m, n = len(grid), len(grid[0])
37         if not (0 <= x < m and 0 <= y < n):
38             return False
39         if visited[x][y] == 1:
40             return False
41         if grid[x][y] == 1:
42             return False
43         return True
44                 
45         
View Code

-------------------------------------------------------------------------

 

598.zombie-in-matrix

Given a 2D grid, each cell is either a wall 2, a zombie 1 or people 0 (the number zero, one, two).Zombies can turn the nearest people(up/down/left/right) into zombies every day, but can not through wall. How long will it take to turn all people into zombies? Return -1 if can not turn all people into zombies.

 1 class Solution:
 2     # @param {int[][]} grid  a 2D integer grid
 3     # @return {int} an integer
 4     def zombie(self, grid):
 5         # Write your code here
 6         row = len(grid)
 7         if row == 0:
 8             return 0
 9         col = len(grid[0])
10         
11         jump = -1
12         nbrow = [1, -1, 0, 0]
13         nbcol = [0, 0, 1, -1]
14         queue = []
15         for r in range(row):
16             for c in range(col):
17                 if grid[r][c] == 1:
18                     queue.append((r,c))
19         while queue:
20             size = len(queue)
21             jump += 1
22             for s in range(size):
23                 (x, y) = queue.pop(0)
24                 for i in range(4):
25                     nx = x + nbrow[i]
26                     ny = y + nbcol[i]
27                     if nx >= 0 and nx < row and ny >= 0 and ny < col \
28                         and grid[nx][ny] == 0 and ((nx, ny) not in queue):
29                         #最后一个条件非常重要,重复元素不入队
30                         grid[nx][ny] = 1
31                         queue.append((nx, ny))
32         for r in range(row):
33             for c in range(col):
34                 if grid[r][c] == 0:
35                     return -1               
36         return jump
View Code

17.5.30二刷

 1 class Solution:
 2     # @param {int[][]} grid  a 2D integer grid
 3     # @return {int} an integer
 4     def zombie(self, grid):
 5         # Write your code here
 6         queue = []
 7         day = 0
 8         cnt = 0
 9         axis_x = [1, -1, 0, 0]
10         axis_y = [0, 0, 1, -1]
11         for i in range(len(grid)):
12             for j in range(len(grid[0])):
13                 if grid[i][j] == 0:
14                     cnt += 1
15                 if grid[i][j] == 1:
16                     queue.append([i, j])
17         if cnt == 0:
18             return day
19         while queue:
20             size = len(queue)
21             day += 1
22             for i in range(size):
23                 z = queue.pop(0)
24                 for i in range(len(axis_x)):
25                     x, y = z[0] + axis_x[i], z[1] + axis_y[i]
26                     if self.check(grid, x, y):
27                         grid[x][y] = 1
28                         queue.append([x, y])
29                         cnt -= 1
30                         if cnt == 0:
31                             return day
32         return -1
33         
34     def check(self, grid, x, y):
35         if not (0 <= x < len(grid) and 0 <= y < len(grid[0])):
36             return False
37         if grid[x][y] != 0:
38             return False
39         return True
40         
View Code

-------------------------------------------------------------------------

 

573.build-post-office-ii

Given a 2D grid, each cell is either a wall 2, an house 1 or empty 0 (the number zero, one, two), find a place to build a post office so that the sum of the distance from the post office to all the houses is smallest.

Return the smallest sum of distance. Return -1 if it is not possible.

 1 class Solution:
 2     # @param {int[][]} grid a 2D grid
 3     # @return {int} an integer
 4     def shortestDistance(self, grid):
 5         # Write your code here
 6         # 判斷當前節點是不是沒走過的empty節點
 7         def isVaild(grid, r, c, row, col, visited):
 8             if r >= 0 and r < row and c >= 0 and c < col \
 9                     and grid[r][c] == 0 and (not visited[r][c]):
10                 return True            
11             return False 
12             
13         row = len(grid)
14         if row == 0:
15             return 0
16         col = len(grid[0])
17         nbrow = [1, -1, 0, 0]
18         nbcol = [0, 0, 1, -1]
19         empty, wall, house, distance = self.initialize(grid, row, col)
20         for h in house: #對於每個房子BFS
21             jump = -1 
22             queue = [h]
23             # visited distance等輔助數組,要使用最原始的數組
24             # (每個元素對應一個格子,存各種數據,而不是存格子下標)
25             # (不要用in查詢,增加復雜度)
26             visited = [[False for c in range(col)] for r in range(row)]
27             while queue:
28                 jump += 1
29                 size = len(queue)
30                 for s in range(size):
31                     node = queue.pop(0)
32                     if grid[node[0]][node[1]] == 0:
33                         distance[node[0]][node[1]] += jump
34                     for i in range(4):
35                         nx = node[0] + nbrow[i]
36                         ny = node[1] + nbcol[i]
37                         if isVaild(grid, nx, ny, row, col, visited):
38                             visited[nx][ny] = True
39                             queue.append((nx, ny))
40             for i in range(row):
41                 for j in range(col):
42                     if not visited[i][j]:
43                         # 假如當前empty,存在一個房子無法到達
44                         # 那么以后郵局不可能選在它上面,路徑也不能通過它
45                         # 標記為牆,以后不需要探測
46                         grid[i][j] = 2
47                         distance[i][j] = 99999
48         result = min([min(l) for l in distance])
49         return result if result != 99999 else -1
50              
51     def initialize(self, grid, row, col):
52         empty = []
53         wall = []
54         house = []
55         distance = [[0 for c in range(col)] for r in range(row)]
56         for r in range(row):
57             for c in range(col):
58                 if grid[r][c] == 1:
59                     house.append((r, c))
60                 elif grid[r][c] == 2:
61                     wall.append((r, c))
62                 else:
63                     empty.append((r, c))
64         for r, c in wall:
65             distance[r][c] = 99999
66         for r, c in house:
67             distance[r][c] = 99999  
68         return empty, wall, house, distance
View Code

17.5.30二刷

 1 class Solution:
 2     # @param {int[][]} grid a 2D grid
 3     # @return {int} an integer
 4     def shortestDistance(self, grid):
 5         # Write your code here
 6         distance = [[0] * len(grid[0]) for i in range(len(grid))]
 7         houses = []
 8         empties = set([])
 9         axis_x = [1, -1, 0, 0]
10         axis_y = [0, 0, 1, -1]
11         for i in range(len(grid)):
12             for j in range(len(grid[0])):
13                 if grid[i][j] != 0:
14                     distance[i][j] = 99999
15                     if grid[i][j] == 1:
16                         houses.append((i, j))
17                 else:
18                     empties.add((i, j))
19                         
20         for h in houses:
21             queue = [h]
22             visited = set(queue)
23             step = -1
24             while queue:
25                 step += 1
26                 size = len(queue)
27                 for i in range(size):
28                     pos = queue.pop(0)
29                     distance[pos[0]][pos[1]] += step
30                     for j in range(len(axis_x)):
31                         x, y = pos[0] + axis_x[j], pos[1] + axis_y[j]
32                         if self.check(grid, distance, visited, x, y):
33                             visited.add((x, y))
34                             queue.append((x, y))
35             diff = empties - visited
36             for d in diff:
37                 distance[d[0]][d[1]] = 99999
38         m = min([min(line) for line in distance])
39         return m if m < 99999 else -1
40             
41     def check(self, grid, distance, visited, x, y):
42         if not (0 <= x < len(grid) and 0 <= y < len(grid[0])):
43             return False
44         return grid[x][y] == 0 and distance[x][y] < 99999 and (x, y) not in visited
45             
View Code

-------------------------------------------------------------------------

 

433.number-of-islands

給一個01矩陣,求不同的島嶼的個數。

0代表海,1代表島,如果兩個1相鄰,那么這兩個1屬於同一個島。我們只考慮上下左右為相鄰。

 1 class Solution:
 2     # @param {boolean[][]} grid a boolean 2D matrix
 3     # @return {int} an integer
 4     def numIslands(self, grid):
 5         # Write your code here
 6         self.row = len(grid)
 7         if self.row == 0:
 8             return 0
 9         self.col = len(grid[0])
10         
11         self.visited = [[False for i in range(self.col)] for j in range(self.row)]
12         count = 0
13         for r in range(self.row):
14             for c in range(self.col):
15                 if self.check(grid, r, c):
16                     self.bfs(grid, r, c)
17                     count += 1
18         return count
19         
20     def check(self, grid, r, c):
21         if r >= 0 and r < self.row and c >= 0 and c < self.col \
22             and grid[r][c] and (not self.visited[r][c]):
23             return True
24         return False
25         
26     def bfs(self, grid, r, c):
27         nbrow = [1, -1, 0, 0]
28         nbcol = [0, 0, 1, -1]
29         queue = [(r, c)]
30         while queue:
31             (x, y) = queue.pop(0)
32             self.visited[x][y] = True
33             for i in range(4):
34                 nx = x + nbrow[i]
35                 ny = y + nbcol[i]
36                 if self.check(grid, nx, ny):
37                     queue.append((nx, ny))
View Code

17.5.31二刷

 1 class Solution:
 2     # @param {boolean[][]} grid a boolean 2D matrix
 3     # @return {int} an integer
 4     def numIslands(self, grid):
 5         # Write your code here
 6         if not grid or not grid[0]:
 7             return 0
 8         m, n = len(grid), len(grid[0])
 9         visited = [[0] * n for i in range(m)]
10         result = 0
11         queue = []
12         for i in range(m):
13             for j in range(n):
14                 if grid[i][j] == 1 and visited[i][j] == 0:
15                     visited[i][j] = 1
16                     result += 1
17                     queue.append((i, j))
18                     self.bfs(queue, grid, visited)
19         return result
20         
21     def bfs(self, queue, grid, visited):
22         axis_x = [1, -1, 0, 0]
23         axis_y = [0, 0, 1, -1]
24         
25         while queue:
26             node = queue.pop(0)
27             for i in range(4):
28                 x = node[0] + axis_x[i]
29                 y = node[1] + axis_y[i]
30                 if self.check(grid, visited, x, y):
31                     visited[x][y] = 1
32                     queue.append((x, y))
33                     
34     def check(self, grid, visited, x, y):
35         if not (0 <= x < len(grid) and 0 <= y < len(grid[0])):
36             return False
37         return grid[x][y] == 1 and visited[x][y] == 0
38             
39         
View Code

-------------------------------------------------------------------------

 

178.graph-valid-tree

給出 n 個節點,標號分別從 0 到 n - 1 並且給出一個 無向 邊的列表 (給出每條邊的兩個頂點), 寫一個函數去判斷這張`無向`圖是否是一棵樹

 1 class Solution:
 2     # @param {int} n an integer
 3     # @param {int[][]} edges a list of undirected edges
 4     # @return {boolean} true if it's a valid tree, or false
 5     def validTree(self, n, edges):
 6         # Write your code here
 7         if not n or edges is None:
 8             return False
 9         if len(edges) != n - 1:
10             return False
11             
12         graph = []
13         for i in range(n):
14             graph.append(set([]))
15         for edge in edges:
16             graph[edge[0]].add(edge[1])
17             graph[edge[1]].add(edge[0])
18             
19         queue = [0]
20         node_set = set([])
21         
22         while queue:
23             key = queue.pop(0)
24             node_set.add(key)
25             for node in graph[key]:
26                 if node not in node_set:
27                     queue.append(node)
28                     
29         return len(node_set) == n
View Code

17.5.31二刷

if len(edges) != n - 1:
    return False

這個條件非常重要,排除連通但是有環的情況。接下來只需要檢查是不是每個節點都visited了

 1 class Solution:
 2     # @param {int} n an integer
 3     # @param {int[][]} edges a list of undirected edges
 4     # @return {boolean} true if it's a valid tree, or false
 5     def validTree(self, n, edges):
 6         # Write your code here
 7         if len(edges) != n - 1:
 8             return False
 9         d = {}
10         v = [0] * n
11         for i in range(n):
12             d[i] = set([])
13 
14         for e in edges:
15             d[e[0]].add(e[1])
16             d[e[1]].add(e[0])
17             
18         queue = [0]
19         v[0] = 1
20         while queue:
21             p = queue.pop(0)
22             for pp in d[p]:
23                 if v[pp] == 0:
24                     v[pp] = 1
25                     queue.append(pp)
26         return sum(v) == n
View Code

-------------------------------------------------------------------------

 

242.convert-binary-tree-to-linked-lists-by-depth

給一棵二叉樹,設計一個算法為每一層的節點建立一個鏈表。也就是說,如果一棵二叉樹有D層,那么你需要創建D條鏈表。

 1 """
 2 Definition of TreeNode:
 3 class TreeNode:
 4     def __init__(self, val):
 5         this.val = val
 6         this.left, this.right = None, None
 7 Definition for singly-linked list.
 8 class ListNode:
 9     def __init__(self, x):
10         self.val = x
11         self.next = None
12 """
13 class Solution:
14     # @param {TreeNode} root the root of binary tree
15     # @return {ListNode[]} a lists of linked list
16     def binaryTreeToLists(self, root):
17         # Write your code here
18         # bfs
19         results = []
20         if not root:
21             return []
22         queue = [root]
23         while queue:
24             # bfs for each level
25             size = len(queue)
26             # header for a linked list
27             header = ListNode( -1)
28             result = header
29             for i in range(size):
30                 ele = queue.pop(0)
31                 result.next = ListNode(ele.val)
32                 result = result.next
33                 if ele.left:
34                     queue.append(ele.left)
35                 if ele.right:
36                     queue.append(ele.right)
37             results.append(header.next)
38         return results
39         
View Code

17.5.31二刷

 1 """
 2 Definition of TreeNode:
 3 class TreeNode:
 4     def __init__(self, val):
 5         this.val = val
 6         this.left, this.right = None, None
 7 Definition for singly-linked list.
 8 class ListNode:
 9     def __init__(self, x):
10         self.val = x
11         self.next = None
12 """
13 class Solution:
14     # @param {TreeNode} root the root of binary tree
15     # @return {ListNode[]} a lists of linked list
16     def binaryTreeToLists(self, root):
17         # Write your code here
18         level = []
19         result = []
20         if not root:
21             return result
22         queue = [root]
23         while queue:
24             size = len(queue)
25             tmp = []
26             for i in range(size):
27                 tn = queue.pop(0)
28                 tmp.append(tn.val)
29                 if tn.left:
30                     queue.append(tn.left)
31                 if tn.right:
32                     queue.append(tn.right)
33             level.append(tmp)
34             
35         for l in level:
36             head = ListNode(0)
37             cur = head
38             for i in l:
39                 cur.next = ListNode(i)
40                 cur = cur.next
41             result.append(head.next)
42             
43         return result
44             
View Code

-------------------------------------------------------------------------

 

624.remove-substrings

Given a string s and a set of n substrings. You are supposed to remove every instance of those n substrings from s so that s is of the minimum length and output this minimum length.

 1 class Solution:
 2     # @param {string} s a string
 3     # @param {set} dict a set of n substrings
 4     # @return {int} the minimum length
 5     def minLength(self, s, dict):
 6         # Write your code here
 7         if not s:
 8             return 0
 9         queue = [s]
10         visited = set([])
11         min_len = sys.maxint
12         while queue:
13             ele = queue.pop(0)
14             for string in dict:
15                 found = ele.find(string)
16                 # to find all the string in ele
17                 while found != -1:
18                     new_s = ele[:found] + ele[found + len(string):]
19                     if new_s not in visited:
20                         visited.add(new_s)
21                         queue.append(new_s)
22                         if len(new_s) < min_len:
23                             min_len = len(new_s)
24                     found = ele.find(string, found + 1)
25         return min_len
26         
View Code

17.5.31二刷

注意while found != -1:

要將字符串中刪除子串的所有可能性嘗試一遍,比如"abcabd", ["ab","abcd"] 按"ab"刪除出兩個子串"cabd","abcd"

 1 class Solution:
 2     # @param {string} s a string
 3     # @param {set} dict a set of n substrings
 4     # @return {int} the minimum length
 5     def minLength(self, s, dict):
 6         # Write your code here
 7         if not s:
 8             return 0
 9         queue = [s]
10         visited = set([])
11         min_len = len(s)
12         while queue:
13             ele = queue.pop(0)
14             for string in dict:
15                 found = ele.find(string)
16                 # to find all the string in ele
17                 while found != -1:
18                     new_s = ele[:found] + ele[found + len(string):]
19                     if new_s not in visited:
20                         visited.add(new_s)
21                         queue.append(new_s)
22                         if len(new_s) < min_len:
23                             min_len = len(new_s)
24                     found = ele.find(string, found + 1)
25         return min_len
View Code

-------------------------------------------------------------------------

 

137.clone-graph

克隆一張無向圖,圖中的每個節點包含一個 label 和一個列表 neighbors

 1 # Definition for a undirected graph node
 2 # class UndirectedGraphNode:
 3 #     def __init__(self, x):
 4 #         self.label = x
 5 #         self.neighbors = []
 6 class Solution:
 7     # @param node, a undirected graph node
 8     # @return a undirected graph node
 9     def __init__(self):
10         self.dict = {}
11         
12     def cloneGraph(self, node):
13         # write your code here
14         if not node:
15             return None
16         nodes = self.bfs(node)
17         
18         map_new_node = {}
19         for n in nodes:
20             map_new_node[n] = UndirectedGraphNode(n.label)
21             
22         for n in nodes:
23             for l in n.neighbors:
24                 map_new_node[n].neighbors.append(map_new_node[l])
25             
26         return map_new_node[node]
27         
28     def bfs(self, node):
29         result = []
30         if not node:
31             return result
32             
33         queue = [node]
34         node_set = set([])
35         while queue:
36             
37             n = queue.pop(0)
38             if n in node_set:
39                 continue
40             result.append(n)
41             node_set.add(n)
42             for l in n.neighbors:
43                 queue.append(l)
44                     
45         return result
View Code

17.5.31二刷

 1 # Definition for a undirected graph node
 2 # class UndirectedGraphNode:
 3 #     def __init__(self, x):
 4 #         self.label = x
 5 #         self.neighbors = []
 6 class Solution:
 7     # @param node, a undirected graph node
 8     # @return a undirected graph node
 9     def __init__(self):
10         self.dict = {}
11         
12     def cloneGraph(self, node):
13         # write your code here
14         if not node:
15             return
16         
17         self.dict[node.label] = UndirectedGraphNode(node.label)
18         queue = [node]
19         
20         while queue:
21             n = queue.pop(0)
22             for nn in n.neighbors:
23                 if nn.label not in self.dict:
24                     queue.append(nn)
25                     self.dict[nn.label] = UndirectedGraphNode(nn.label)
26                 self.dict[n.label].neighbors.append(self.dict[nn.label])
27             
28             
29         return self.dict[node.label]
View Code

-------------------------------------------------------------------------

 

531.six-degrees

現在給你一個友誼關系,查詢兩個人可以通過幾步相連,如果不相連返回 -1

 1 # Definition for Undirected graph node
 2 # class UndirectedGraphNode:
 3 #     def __init__(self, x):
 4 #         self.label = x
 5 #         self.neighbors = []
 6 
 7 class Solution:
 8     '''
 9     @param {UndirectedGraphNode[]} graph a list of Undirected graph node
10     @param {UndirectedGraphNode} s, t two Undirected graph nodes
11     @return {int} an integer
12     '''
13     def sixDegrees(self, graph, s, t):
14         # Write your code here
15         if not graph or not s or not t:
16             return -1
17             
18         queue = [s]
19         steps = 0
20         visited = set([s])
21         
22         while queue:
23             size = len(queue)
24             for i in range(size):
25                 node = queue.pop(0)
26                 if node == t:
27                     return steps
28                 for neighbor in node.neighbors:
29                     if neighbor not in visited:
30                         queue.append(neighbor)
31                         visited.add(neighbor)
32             steps += 1
33         return -1
View Code

17.5.31二刷

 1 # Definition for Undirected graph node
 2 # class UndirectedGraphNode:
 3 #     def __init__(self, x):
 4 #         self.label = x
 5 #         self.neighbors = []
 6 
 7 class Solution:
 8     '''
 9     @param {UndirectedGraphNode[]} graph a list of Undirected graph node
10     @param {UndirectedGraphNode} s, t two Undirected graph nodes
11     @return {int} an integer
12     '''
13     def sixDegrees(self, graph, s, t):
14         # Write your code here
15         if not graph or not s or not t:
16             return -1
17             
18         queue = [s]
19         steps = 0
20         visited = set([s])
21         
22         while queue:
23             size = len(queue)
24             for i in range(size):
25                 node = queue.pop(0)
26                 if node == t:
27                     return steps
28                 for neighbor in node.neighbors:
29                     if neighbor not in visited:
30                         queue.append(neighbor)
31                         visited.add(neighbor)
32             steps += 1
33         return -1
View Code

-------------------------------------------------------------------------

605.sequence-reconstruction

判斷是否序列 org 能唯一地由 seqs重構得出. org是一個由從1到n的正整數排列而成的序列,1 ≤ n ≤ 10^4。 重構表示組合成seqs的一個最短的父序列 (意思是,一個最短的序列使得所有 seqs里的序列都是它的子序列). 
判斷是否有且僅有一個能從 seqs重構出來的序列,並且這個序列是org

 

注意點:

拓撲排序,一個點只能讓一個next入隊

最后比較是否都找到了

 1 class Solution:
 2     # @param {int[]} org a permutation of the integers from 1 to n
 3     # @param {int[][]} seqs a list of sequences
 4     # @return {boolean} true if it can be reconstructed only one or false
 5     def sequenceReconstruction(self, org, seqs):
 6         # Write your code here
 7         from collections import defaultdict
 8         edges = defaultdict(list)
 9         indegrees = defaultdict(int)
10         nodes = set()
11         for seq in seqs:
12             nodes |= set(seq)
13             for i in xrange(len(seq)):
14                 if i == 0:
15                     indegrees[seq[i]] += 0
16                 if i < len(seq) - 1:
17                     edges[seq[i]].append(seq[i + 1])
18                     indegrees[seq[i + 1]] += 1
19 
20         cur = [k for k in indegrees if indegrees[k] == 0]
21         res = []
22 
23         while len(cur) == 1:
24             cur_node = cur.pop()
25             res.append(cur_node)
26             for node in edges[cur_node]:
27                 indegrees[node] -= 1
28                 if indegrees[node] == 0:
29                     cur.append(node)
30         if len(cur) > 1:
31             return False
32         return len(res) == len(nodes) and res == org
View Code

17.6.8 二刷

 1 class Solution:
 2     # @param {int[]} org a permutation of the integers from 1 to n
 3     # @param {int[][]} seqs a list of sequences
 4     # @return {boolean} true if it can be reconstructed only one or false
 5     def sequenceReconstruction(self, org, seqs):
 6         # Write your code here
 7         if not org and (not seqs or not seqs[0]):
 8             return True
 9         map = {}
10         queue = []
11         rebulid = []
12         for seq in seqs:
13             if seq:
14                 map.setdefault(seq[0], {"pre":0, "next":set([])})
15             for i in range(1, len(seq)):
16                 map.setdefault(seq[i], {"pre":0, "next":set([])})
17                 if seq[i] not in map[seq[i - 1]]["next"]:
18                     map[seq[i]]["pre"] += 1
19                     map[seq[i - 1]]["next"].add(seq[i])
20             
21         for key in map:
22             if map[key]["pre"] == 0:
23                 queue.append(key)
24                 
25         if len(queue) != 1:
26             return False
27             
28         while queue:
29             node = queue.pop(0)
30             rebulid.append(node)
31             flag = False
32             for next in map[node]["next"]:
33                 map[next]["pre"] -= 1
34                 if map[next]["pre"] == 0:
35                     if not flag:
36                         flag = True
37                         queue.append(next)
38                     else:
39                         return False
40         return rebulid == org
View Code

-------------------------------------------------------------------------

431.connected-component-in-undirected-graph

找出無向圖中所有的連通塊。

圖中的每個節點包含一個label屬性和一個鄰接點的列表。(一個無向圖的連通塊是一個子圖,其中任意兩個頂點通過路徑相連,且不與整個圖中的其它頂點相連。)

 1 # Definition for a undirected graph node
 2 # class UndirectedGraphNode:
 3 #     def __init__(self, x):
 4 #         self.label = x
 5 #         self.neighbors = []
 6 class Solution:
 7     # @param {UndirectedGraphNode[]} nodes a array of undirected graph node
 8     # @return {int[][]} a connected set of a undirected graph
 9     def connectedSet(self, nodes):
10         # Write your code here
11         queue = []
12         visited = set([])
13         results = []
14         
15         for node in nodes:
16             if node not in visited:
17                 visited.add(node)
18                 queue.append(node)
19                 result = [node.label]    
20                 while queue:
21                     item = queue.pop(0)
22                     for neighbor in item.neighbors:
23                         if neighbor not in visited:
24                             queue.append(neighbor)
25                             visited.add(neighbor)
26                             result.append(neighbor.label)
27                 results.append(sorted(result))
28         return results
29             
View Code

17.6.8 二刷

 1 # Definition for a undirected graph node
 2 # class UndirectedGraphNode:
 3 #     def __init__(self, x):
 4 #         self.label = x
 5 #         self.neighbors = []
 6 class Solution:
 7     # @param {UndirectedGraphNode[]} nodes a array of undirected graph node
 8     # @return {int[][]} a connected set of a undirected graph
 9     def connectedSet(self, nodes):
10         # Write your code here
11         result = []
12         not_visited = set([])
13         for n in nodes:
14             not_visited.add(n)
15             
16         while not_visited:
17             next = None
18             for i in not_visited:
19                 next = i
20                 break
21             queue = [next]
22             not_visited.remove(next)
23             tmp = []
24             while queue:
25                 node = queue.pop(0)
26                 tmp.append(node.label)
27                 for n in node.neighbors:
28                     if n in not_visited:
29                         queue.append(n)
30                         not_visited.remove(n)
31             result.append(sorted(tmp))
32         return result
33             
View Code

-------------------------------------------------------------------------

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM