跟蹤就是在連續視頻幀中定位物體,通常的跟蹤算法包括以下幾類:
1. Dense Optical Flow 稠密光流
2. Sparse Optical Flow 稀疏光流 最典型的如KLT算法(Kanade-Lucas-Tomshi)
3. Kalman Filter
4. Meanshift and Camshift
5. Multiple object tracking
需要注意跟蹤和識別的區別,通常來說跟蹤可以比識別快很多,且跟蹤失敗了可以找回來。
OpenCV 3以后實現了很多追蹤算法,都實現在contrib模塊中,安裝參考。
下面code實現了跟蹤筆記本攝像頭畫面中的固定區域物體,可以選用OpenCV實現的算法
#include <opencv2/opencv.hpp> #include <opencv2/tracking.hpp> using namespace std; using namespace cv; int main(int argc, char** argv){ // can change to BOOSTING, MIL, KCF (OpenCV 3.1), TLD, MEDIANFLOW, or GOTURN (OpenCV 3.2) Ptr<Tracker> tracker = Tracker::create("MEDIANFLOW"); VideoCapture video(0); if(!video.isOpened()){ cerr << "cannot read video!" << endl; return -1; } Mat frame; video.read(frame); Rect2d box(270, 120, 180, 260); tracker->init(frame, box); while(video.read(frame)){ tracker->update(frame, box); rectangle(frame, box, Scalar(255, 0, 0), 2, 1); imshow("Tracking", frame); int k=waitKey(1); if(k==27) break; } }
着重了解效果較好的KCF(Kernelized Correlation Filters)和經典的KLT算法