讓代碼分布式運行是所有分布式計算框架需要解決的最基本的問題。
Spark是大數據領域中相當火熱的計算框架,在大數據分析領域有一統江湖的趨勢,網上對於Spark源碼分析的文章有很多,但是介紹Spark如何處理代碼分布式執行問題的資料少之又少,這也是我撰寫文本的目的。
Spark運行在JVM之上,任務的執行依賴序列化及類加載機制,因此本文會重點圍繞這兩個主題介紹Spark對代碼分布式執行的處理。本文假設讀者對Spark、Java、Scala有一定的了解,代碼示例基於Scala,Spark源碼基於2.1.0版本。閱讀本文你可以了解到:
- Java對象序列化機制
- 類加載器的作用
- Spark對closure序列化的處理
- Spark Application的class是如何加載的
- Spark REPL(spark-shell)中的代碼是如何分布式執行的
根據以上內容,讀者可以基於JVM相關的語言構建一個自己的分布式計算服務框架。
Java對象序列化
序列化(Serialization)是將對象的狀態信息轉換為可以存儲或傳輸的形式的過程。所謂的狀態信息指的是對象在內存中的數據,Java中一般指對象的字段數據。我們開發Java應用的時候或多或少都處理過對象序列化,對象常見的序列化形式有JSON、XML等。
JDK中內置一個ObjectOutputStream
類可以將對象序列化為二進制數據,使用ObjectOutputStream
序列化對象時,要求對象所屬的類必須實現java.io.Serializable
接口,否則會報java.io.NotSerializableException
的異常。
基本的概念先介紹到這。接下來我們一起探討一個問題:Java的方法能否被序列化?
假設我們有如下的SimpleTask
類(Java類):
import java.io.Serializable;
public abstract class Task implements Serializable {
public void run() {
System.out.println("run task!");
}
}
public class SimpleTask extends Task {
@Override
public void run() {
System.out.println("run simple task!");
}
}
還有一個用於將對象序列化到文件的工具類FileSerializer
:
import java.io.{FileInputStream, FileOutputStream, ObjectInputStream, ObjectOutputStream}
object FileSerializer {
def writeObjectToFile(obj: Object, file: String) = {
val fileStream = new FileOutputStream(file)
val oos = new ObjectOutputStream(fileStream)
oos.writeObject(obj)
oos.close()
}
def readObjectFromFile(file: String): Object = {
val fileStream = new FileInputStream(file)
val ois = new ObjectInputStream(fileStream)
val obj = ois.readObject()
ois.close()
obj
}
}
簡單起見,我們采用將對象序列化到文件,然后通過反序列化執行的方式來模擬代碼的分布式執行。SimpleTask就是我們需要模擬分布式執行的代碼。我們先將SimpleTask
序列化到文件中:
val task = new SimpleTask()
FileSerializer.writeObjectToFile(task, "task.ser")
然后將SimpleTask
類從我們的代碼中刪除,此時只有task.ser
文件中含有task對象的序列化數據。接下來我們執行下面的代碼:
val task = FileSerializer.readObjectFromFile("task.ser").asInstanceOf[Task]
task.run()
請各位讀者思考,上面的代碼執行后會出現什么樣的結果?
- 輸出:
run simple task!
? - 輸出:
run task!
? - 還是會報錯?
實際執行會出現形如下面的異常:
Exception in thread "main" java.lang.ClassNotFoundException: site.stanzhai.serialization.SimpleTask
at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:331)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:348)
at java.io.ObjectInputStream.resolveClass(ObjectInputStream.java:628)
at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1620)
at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1521)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1781)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1353)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:373)
at site.stanzhai.serialization.FileSerializer$.readObjectFromFile(FileSerializer.scala:20)
從異常信息來看,反序列過程中找不到SimpleTask
類。由此可以推斷序列化后的數據是不包含類的定義信息的。那么,ObjectOutputStream
到底序列化了哪些信息呢?
對ObjectOutputStream
實現機制感興趣的同學可以去看下JDK中這個類的實現,ObjectOutputStream
序列化對象時,從父類的數據開始序列化到子類,如果override了writeObject方法,會反射調用writeObject來序列化數據。序列化的數據會按照以下的順序以二進制的形式輸出到OutputStream中:
- 類的descriptor(僅僅是類的描述信息,不包含類的定義)
- 對象的primitive類型數據(int,boolean等,String和Array是特殊處理的)
- 對象的其他obj數據
回到我們的問題上:Java的方法能否被序列化?通過我們代碼示例及分析,想必大家對這個問題應該清楚了。通過ObjectOutputStream
序列化對象,僅包含類的描述(而非定義),對象的狀態數據,由於缺少類的定義,也就是缺少SimpleTask
的字節碼,反序列化過程中就會出現ClassNotFound的異常。
如何讓我們反序列化的對象能正常使用呢?我們還需要了解類加載器。
類加載器:ClassLoader
ClassLoader在Java中是一個抽象類,ClassLoader的作用是加載類,給定一個類名,ClassLoader會嘗試查找或生成類的定義,一種典型的加載策略是將類名對應到文件名上,然后從文件系統中加載class file。
在我們的示例中,反序列化SimpleTask
失敗,是因為JVM找不到類的定義,因此要確保正常反序列化,我們必須將SimpleTask
的class文件保存下來,反序列化的時候能夠讓ClassLoader加載到SimpleTask
的class。
接下來,我們對代碼做一些改造,添加一個ClassManipulator
類,用於將對象的class文件導出到當前目錄的文件中,默認的文件名就是對象的類名(不含包名):
object ClassManipulator {
def saveClassFile(obj: AnyRef): Unit = {
val classLoader = obj.getClass.getClassLoader
val className = obj.getClass.getName
val classFile = className.replace('.', '/') + ".class"
val stream = classLoader.getResourceAsStream(classFile)
// just use the class simple name as the file name
val outputFile = className.split('.').last + ".class"
val fileStream = new FileOutputStream(outputFile)
var data = stream.read()
while (data != -1) {
fileStream.write(data)
data = stream.read()
}
fileStream.flush()
fileStream.close()
}
}
按照JVM的規范,假設對package.Simple
這樣的一個類編譯,編譯后的class文件為package/Simple.class
,因此我們可以根據路徑規則,從當前JVM進程的Resource中得到指定類的class數據。
在刪除SimpleTask
前,我們除了將task序列化到文件外,還需要將task的class文件保存起來,執行完下面的代碼,SimpleTask
類就可以從代碼中剔除了:
val task = new SimpleTask()
FileSerializer.writeObjectToFile(task, "task.ser")
ClassManipulator.saveClassFile(task)
由於我們保存class文件的方式比較特殊,既不在jar包中,也不是按package/ClassName.class這種標准的保存方式,因此還需要實現一個自定義的FileClassLoader
按照我們保存class文件的方式來加載所需的類:
class FileClassLoader() extends ClassLoader {
override def findClass(fullClassName: String): Class[_] = {
val file = fullClassName.split('.').last + ".class"
val in = new FileInputStream(file)
val bos = new ByteArrayOutputStream
val bytes = new Array[Byte](4096)
var done = false
while (!done) {
val num = in.read(bytes)
if (num >= 0) {
bos.write(bytes, 0, num)
} else {
done = true
}
}
val data = bos.toByteArray
defineClass(fullClassName, data, 0, data.length)
}
}
ObjectInputStream
類用於對象的反序列化,在反序列化過程中,它根據序列化數據中類的descriptor信息,調用resolveClass
方法加載對應的類,但是通過Class.forName
加載class使用的並不是我們自定義的FileClassLoader
,所以如果直接使用ObjectInputStream
進行反序列,依然會因為找不到類而報錯,下面是resolveClass
的源碼:
protected Class<?> resolveClass(ObjectStreamClass desc)
throws IOException, ClassNotFoundException
{
String name = desc.getName();
try {
return Class.forName(name, false, latestUserDefinedLoader());
} catch (ClassNotFoundException ex) {
Class<?> cl = primClasses.get(name);
if (cl != null) {
return cl;
} else {
throw ex;
}
}
}
為了能讓ObjectInputStream
在序列化的過程中使用我們自定義的ClassLoader,我們還需要對FileSerializer
中的readObjectFromFile
方法做些改造,修改的代碼如下:
def readObjectFromFile(file: String, classLoader: ClassLoader): Object = {
val fileStream = new FileInputStream(file)
val ois = new ObjectInputStream(fileStream) {
override def resolveClass(desc: ObjectStreamClass): Class[_] =
Class.forName(desc.getName, false, classLoader)
}
val obj = ois.readObject()
ois.close()
obj
}
最后,我們將反序列化的代碼調整為:
val fileClassLoader = new FileClassLoader()
val task = FileSerializer.readObjectFromFile("task.ser", fileClassLoader).asInstanceOf[Task]
task.run()
反序列化的過程中能夠通過fileClassLoader加載到所需的類,這樣我們在執行就不會出錯了,最終的執行結果為:run simple task!
。到此為止,我們已經完整地模擬了代碼分布式執行的過程。完整的示例代碼,請參閱:https://github.com/stanzhai/jvm-exercise/tree/master/src/main/scala/site/stanzhai/exercise/serialization
Spark對closure序列化的處理
我們依然通過一個示例,快速了解下Scala對閉包的處理,下面是從Scala的REPL中執行的代碼:
scala> val n = 2
n: Int = 2
scala> val f = (x: Int) => x * n
f: Int => Int = <function1>
scala> Seq.range(0, 5).map(f)
res0: Seq[Int] = List(0, 2, 4, 6, 8)
f
是采用Scala的=>
語法糖定義的一個閉包,為了弄清楚Scala是如何處理閉包的,我們繼續執行下面的代碼:
scala> f.getClass
res0: Class[_ <: Int => Int] = class $anonfun$1
scala> f.isInstanceOf[Function1[Int, Int]]
res1: Boolean = true
scala> f.isInstanceOf[Serializable]
res2: Boolean = true
可以看出f
對應的類為$anonfun$1
是Function1[Int, Int]
的子類,而且實現了Serializable
接口,這說明f
是可以被序列化的。
Spark對於數據的處理基本都是基於閉包,下面是一個簡單的Spark分布式處理數據的代碼片段:
val spark = SparkSession.builder().appName("demo").master("local").getOrCreate()
val sc = spark.sparkContext
val data = Array(1, 2, 3, 4, 5)
val distData = sc.parallelize(data)
val sum = distData.map(x => x * 2).sum()
println(sum) // 30.0
對於distData.map(x => x * 2)
,map中傳的一個匿名函數,也是一個非常簡單的閉包,對distData
中的每個元素*2,我們知道對於這種形式的閉包,Scala編譯后是可以序列化的,所以我們的代碼能正常執行也合情合理。將入我們將處理函數的閉包定義到一個類中,然后將代碼改造為如下形式:
class Operation {
val n = 2
def multiply = (x: Int) => x * n
}
...
val sum = distData.map(new Operation().multiply).sum()
...
我們在去執行,會出現什么樣的結果呢?實際執行會出現這樣的異常:
Exception in thread "main" org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:298)
...
Caused by: java.io.NotSerializableException: Operation
Scala在構造閉包的時候會確定他所依賴的外部變量,並將它們的引用存到閉包對象中,這樣能保證在不同的作用域中調用閉包不出現問題。
出現Task not serializable
的異常,是由於我們的multiply
函數依賴Operation
類的變量n
,雖然multiply是支持序列化的,但是Operation
不支持序列化,這導致multiply
函數在序列化的過程中出現了NotSerializable
的異常,最終導致我們的Task序列化失敗。為了確保multiply
能被正常序列化,我們需要想辦法去除對Operation
的依賴,我們將代碼做如下修改,在去執行就可以了:
class Operation {
def multiply = (x: Int) => x * 2
}
...
val sum = distData.map(new Operation().multiply).sum()
...
Spark對閉包序列化前,會通過工具類org.apache.spark.util.ClosureCleaner
嘗試clean掉閉包中無關的外部對象引用,ClosureCleaner
對閉包的處理是在運行期間,相比Scala編譯器,能更精准的去除閉包中無關的引用。這樣做,一方面可以盡可能保證閉包可被序列化,另一方面可以減少閉包序列化后的大小,便於網絡傳輸。
我們在開發Spark應用的時候,如果遇到Task not serializable
的異常,就需要考慮下,閉包中是否或引用了無法序列化的對象,有的話,嘗試去除依賴就可以了。
Spark中實現的序列化工具有多個:
從SparkEnv
類的實現來看,用於閉包序列化的是JavaSerializer
:
JavaSerializer
內部使用的是ObjectOutputStream
將閉包序列化:
private[spark] class JavaSerializationStream(
out: OutputStream, counterReset: Int, extraDebugInfo: Boolean)
extends SerializationStream {
private val objOut = new ObjectOutputStream(out)
...
}
將閉包反序列化的核心代碼為:
private[spark] class JavaDeserializationStream(in: InputStream, loader: ClassLoader)
extends DeserializationStream {
private val objIn = new ObjectInputStream(in) {
override def resolveClass(desc: ObjectStreamClass): Class[_] =
try {
Class.forName(desc.getName, false, loader)
} catch {
case e: ClassNotFoundException =>
JavaDeserializationStream.primitiveMappings.getOrElse(desc.getName, throw e)
}
}
...
}
關於ObjectInputStream
我們前面已有介紹,JavaDeserializationStream
有個關鍵的成員變量loader
,它是個ClassLoader,可以讓Spark使用非默認的ClassLoader按照自定義的加載策略去加載class,這樣才能保證反序列化過程在其他節點正常進行。
通過前面的介紹,想要代碼在另一端執行,只有序列化還不行,還需要保證執行端能夠加載到閉包對應的類。接下來我們探討Spark加載class的機制。
Spark Application的class是如何加載的
通常情況下我們會將開發的Spark Application打包為jar包,然后通過spark-submit
命令提交到集群運行,下面是一個官網的示例:
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
... \
--jars /path/to/dep-libs.jar \
/path/to/examples.jar \
此時,我們編寫的代碼中所包含的閉包,對應的類已經被編譯到jar包中了,所以Executor端只要能加載到這個jar包,從jar包中定位閉包的class文件,就可以將閉包反序列化了。事實上Spark也是這么做的。
Spark Application的Driver端在運行的時候會基於netty建立一個文件服務,我們運行的jar包,及--jars
中指定的依賴jar包,會被添加到文件服務器中。這個過程在SparkContext
的addJar方法中完成:
/**
* Adds a JAR dependency for all tasks to be executed on this SparkContext in the future.
* The `path` passed can be either a local file, a file in HDFS (or other Hadoop-supported
* filesystems), an HTTP, HTTPS or FTP URI, or local:/path for a file on every worker node.
*/
def addJar(path: String) {
if (path == null) {
logWarning("null specified as parameter to addJar")
} else {
var key = ""
if (path.contains("\\")) {
// For local paths with backslashes on Windows, URI throws an exception
key = env.rpcEnv.fileServer.addJar(new File(path))
} else {
val uri = new URI(path)
// SPARK-17650: Make sure this is a valid URL before adding it to the list of dependencies
Utils.validateURL(uri)
key = uri.getScheme match {
// A JAR file which exists only on the driver node
case null | "file" =>
try {
env.rpcEnv.fileServer.addJar(new File(uri.getPath))
} catch {
case exc: FileNotFoundException =>
logError(s"Jar not found at $path")
null
}
// A JAR file which exists locally on every worker node
case "local" =>
"file:" + uri.getPath
case _ =>
path
}
}
if (key != null) {
val timestamp = System.currentTimeMillis
if (addedJars.putIfAbsent(key, timestamp).isEmpty) {
logInfo(s"Added JAR $path at $key with timestamp $timestamp")
postEnvironmentUpdate()
}
}
}
}
Executor端在執行任務的時候,會從任務信息中得到依賴的jar包,然后updateDependencies
從Driver端的文件服務器下載缺失的jar包,並將jar包添加到URLClassLoader中,最后再將task反序列化,反序列化前所需的jar都已准備好,因此能夠將task中的閉包正常反序列化,核心代碼如下:
override def run(): Unit = {
...
try {
val (taskFiles, taskJars, taskProps, taskBytes) =
Task.deserializeWithDependencies(serializedTask)
// Must be set before updateDependencies() is called, in case fetching dependencies
// requires access to properties contained within (e.g. for access control).
Executor.taskDeserializationProps.set(taskProps)
updateDependencies(taskFiles, taskJars)
task = ser.deserialize[Task[Any]](taskBytes, Thread.currentThread.getContextClassLoader)
...
} finally {
runningTasks.remove(taskId)
}
}
這么來看,整個Spark Application分布式加載class的機制就比較清晰了。Executor端能夠正常加載class,反序列化閉包,分布式執行代碼自然就不存在什么問題了。
Spark REPL(spark-shell)中的代碼是如何分布式執行的
spark-shell
是Spark為我們提供的一個REPL的工具,可以讓我們非常方便的寫一些簡單的數據處理腳本。下面是一個運行在spark-shell
的代碼:
scala> val f = (x: Int) => x + 1
f: Int => Int = <function1>
scala> val data = Array(1, 2, 3, 4, 5)
data: Array[Int] = Array(1, 2, 3, 4, 5)
scala> val distData = sc.parallelize(data)
distData: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:26
scala> distData.map(f).sum()
res0: Double = 20.0
我們已知,閉包f
會被Scala編譯為匿名類,如果要將f
序列化到Executor端執行,必須要加載f
對應的匿名類的class數據,才能正常反序列化。
Spark是如何得到f
的class數據的?Executor又是如何加載到的?
源碼面前,了無秘密。我們看一下Spark的repl項目的代碼入口,核心代碼如下:
object Main extends Logging {
...
val rootDir = conf.getOption("spark.repl.classdir").getOrElse(Utils.getLocalDir(conf))
val outputDir = Utils.createTempDir(root = rootDir, namePrefix = "repl")
def main(args: Array[String]) {
doMain(args, new SparkILoop)
}
// Visible for testing
private[repl] def doMain(args: Array[String], _interp: SparkILoop): Unit = {
interp = _interp
val jars = Utils.getUserJars(conf, isShell = true).mkString(File.pathSeparator)
val interpArguments = List(
"-Yrepl-class-based",
"-Yrepl-outdir", s"${outputDir.getAbsolutePath}",
"-classpath", jars
) ++ args.toList
val settings = new GenericRunnerSettings(scalaOptionError)
settings.processArguments(interpArguments, true)
if (!hasErrors) {
interp.process(settings) // Repl starts and goes in loop of R.E.P.L
Option(sparkContext).map(_.stop)
}
}
...
}
Spark2.1.0的REPL基於Scala-2.11的scala.tools.nsc
編譯工具實現,代碼已經相當簡潔,Spark給interp
設置了2個關鍵的配置-Yrepl-class-based
和-Yrepl-outdir
,通過這兩個配置,我們在shell中輸入的代碼會被編譯為class文件輸出到執行的文件夾中。如果指定了spark.repl.classdir
配置,會用這個配置的路徑作為class文件的輸出路徑,否則使用SPARK_LOCAL_DIRS
對應的路徑。下面是我測試過程中輸出到文件夾中的class文件:
我們已經清楚Spark如何將shell中的代碼編譯為class了,那么Executor端,如何加載到這些class文件呢?在org/apache/spark/executor/Executor.scala
中有段和REPL相關的代碼:
private val urlClassLoader = createClassLoader()
private val replClassLoader = addReplClassLoaderIfNeeded(urlClassLoader)
/**
* If the REPL is in use, add another ClassLoader that will read
* new classes defined by the REPL as the user types code
*/
private def addReplClassLoaderIfNeeded(parent: ClassLoader): ClassLoader = {
val classUri = conf.get("spark.repl.class.uri", null)
if (classUri != null) {
logInfo("Using REPL class URI: " + classUri)
try {
val _userClassPathFirst: java.lang.Boolean = userClassPathFirst
val klass = Utils.classForName("org.apache.spark.repl.ExecutorClassLoader")
.asInstanceOf[Class[_ <: ClassLoader]]
val constructor = klass.getConstructor(classOf[SparkConf], classOf[SparkEnv],
classOf[String], classOf[ClassLoader], classOf[Boolean])
constructor.newInstance(conf, env, classUri, parent, _userClassPathFirst)
} catch {
case _: ClassNotFoundException =>
logError("Could not find org.apache.spark.repl.ExecutorClassLoader on classpath!")
System.exit(1)
null
}
} else {
parent
}
}
override def run(): Unit = {
...
Thread.currentThread.setContextClassLoader(replClassLoader)
val ser = env.closureSerializer.newInstance()
...
}
Executor啟動時會判斷是否為REPL模式,如果是的話會使用ExecutorClassLoader
做為反序列閉包時所使用的ClassLoader,ExecutorClassLoader
會通過網絡從Driver端(也就是執行spark-shell
的節點)加載所需的class文件。這樣我們在spark-shell
中寫的代碼就可以分布式執行了。
總結
Spark實現代碼的分布式執行有2個關鍵點:
- 對象必須可序列化
- Executor端能夠加載到所需類的class文件,保證反序列化過程不出錯,這點通過自定義的ClassLoader來保障
滿足以上2個條件,我們的代碼就可以分布式運行了。
當然,構建一個完整的分布式計算框架,還需要有網絡通信框架、RPC、文件傳輸服務等作為支撐,在了解Spark代碼分布式執行原理的基礎上,相信讀者已有思路基於JVM相關的語言構建分布式計算服務。
類比其他非JVM相關的語言,實現一個分布式計算框架,依然是需要解決序列化,動態加載執行代碼的問題。