(原創文章,轉載請注明地址:http://www.cnblogs.com/wangkundentisy/p/6539058.html )
1.t分布式統計分布的一種,同卡方分布(χ2分布)、F分布並稱為三大分布。
2. t分布又叫student-t分布,常常用於根據小樣本來估計呈正態分布且方差值為知的樣本的均值。(如果總體的方差已知的話,則應該用正態分布來估計總體的均值。)(所以一個前提是:t分布的樣本的總體必須符合正態分布)
3.t分布一般用於小樣本(樣本量比較小)的情形。
4.假設X服從標准正態分布即X~N(0,1),Y服從自由度n的卡方分布即Y~χ2(n),且X與Y是相互獨立的,那么Z=X/sqrt(Y/n)的分布成為自由的為n的t分布,記為Z~t(n).
5.對於
Z~t(n),其數學期望E(Z) = 0,n>1;方差D(Z)=n/n-2 , n>2 。
6.特征:
(1).以0為中心,左右對稱的單峰分布;
(2).t分布是一簇曲線,其形態變化與n(即其自由度)大小有關。自由度n越小,t分布曲線越低平;自由度n越大,t分布曲線越接近標准正態分布(u分布)曲線,當自由度無限大時,t分布就成了正態分布,如圖.
t(n)分布與其密度函數。

(3).隨着自由度逐漸增大,t分布逐漸接近標准正態分布。
對應於每一個自由度df,就有一條t分布曲線,每條曲線都有其曲線下統計量t的分布規律,計算較復雜。
學生的t分布(或也t分布) ,在概率統計中,在置信區間估計、顯著性檢驗等問題的計算中發揮重要作用。
7.詳述:
假設
是呈正態分布的獨立的隨機變量(隨機變量的期望值是
,方差是
但未知)。 令:



為樣本均值。
為樣本方差。
它顯示了數量

呈正態分布並且均值和方差分別為0和1。
另一個相關數量

T的概率密度函數是:





如果是奇數,

T的概率密度函數的形狀類似於均值為0方差為1的正態分布,但更低更寬。隨着自由度
的增加,則越來越接近均值為0方差為1的正態分布。

8.t分布置信區間的推導:
假設數量A在當T呈t-分布(T的自由度為n − 1)滿足
這與

A是這個概率分布的第95個百分點
那么
等價於

因此μ的90%置信區間為:

9.分布表格的用法
下表列出了自由度為v 的t-分布的單側和雙側區間值。例如,當樣本數量n=5時,則自由度v=4,我們就可以查找表中以4開頭的行。該行第5列值為2.132,對應的單側值為95%(雙側值為90%)。這也就是說,T小於2.132的概率為95%(即單側),記為Pr(−∞ < T < 2.132) = 0.95;同時,T值介於-2.132和2.132之間的概率為90%(即雙側),記為Pr(−2.132 < T < 2.132) = 0.9。
這是根據分布的對稱性計算得到的,
Pr(T < −2.132) = 1 − Pr(T > −2.132) = 1 − 0.95 = 0.05,
因此,
Pr(−2.132 < T < 2.132) = 1 − 2(0.05) = 0.9.
注意關於表格的最后一行的值:自由度為無限大的t-分布和正態分布等價。
單側
|
75%
|
80%
|
85%
|
90%
|
95%
|
97.5%
|
99%
|
99.5%
|
99.75%
|
99.9%
|
99.95%
|
---|---|---|---|---|---|---|---|---|---|---|---|
雙側
|
50%
|
60%
|
70%
|
80%
|
90%
|
95%
|
98%
|
99%
|
99.5%
|
99.8%
|
99.9%
|
1
|
1.000
|
1.376
|
1.963
|
3.078
|
6.314
|
12.71
|
31.82
|
63.66
|
127.3
|
318.3
|
636.6
|
2
|
0.816
|
1.061
|
1.386
|
1.886
|
2.920
|
4.303
|
6.965
|
9.925
|
14.09
|
22.33
|
31.60
|
3
|
0.765
|
0.978
|
1.250
|
1.638
|
2.353
|
3.182
|
4.541
|
5.841
|
7.453
|
10.21
|
12.92
|
4
|
0.741
|
0.941
|
1.190
|
1.533
|
2.132
|
2.776
|
3.747
|
4.604
|
5.598
|
7.173
|
8.610
|
5
|
0.727
|
0.920
|
1.156
|
1.476
|
2.015
|
2.571
|
3.365
|
4.032
|
4.773
|
5.893
|
6.869
|
6
|
0.718
|
0.906
|
1.134
|
1.440
|
1.943
|
2.447
|
3.143
|
3.707
|
4.317
|
5.208
|
5.959
|
7
|
0.711
|
0.896
|
1.119
|
1.415
|
1.895
|
2.365
|
2.998
|
3.499
|
4.029
|
4.785
|
5.408
|
8
|
0.706
|
0.889
|
1.108
|
1.397
|
1.860
|
2.306
|
2.896
|
3.355
|
3.833
|
4.501
|
5.041
|
9
|
0.703
|
0.883
|
1.100
|
1.383
|
1.833
|
2.262
|
2.821
|
3.250
|
3.690
|
4.297
|
4.781
|
10
|
0.700
|
0.879
|
1.093
|
1.372
|
1.812
|
2.228
|
2.764
|
3.169
|
3.581
|
4.144
|
4.587
|
11
|
0.697
|
0.876
|
1.088
|
1.363
|
1.796
|
2.201
|
2.718
|
3.106
|
3.497
|
4.025
|
4.437
|
12
|
0.695
|
0.873
|
1.083
|
1.356
|
1.782
|
2.179
|
2.681
|
3.055
|
3.428
|
3.930
|
4.318
|
13
|
0.694
|
0.870
|
1.079
|
1.350
|
1.771
|
2.160
|
2.650
|
3.012
|
3.372
|
3.852
|
4.221
|
14
|
0.692
|
0.868
|
1.076
|
1.345
|
1.761
|
2.145
|
2.624
|
2.977
|
3.326
|
3.787
|
4.140
|
15
|
0.691
|
0.866
|
1.074
|
1.341
|
1.753
|
2.131
|
2.602
|
2.947
|
3.286
|
3.733
|
4.073
|
16
|
0.690
|
0.865
|
1.071
|
1.337
|
1.746
|
2.120
|
2.583
|
2.921
|
3.252
|
3.686
|
4.015
|
17
|
0.689
|
0.863
|
1.069
|
1.333
|
1.740
|
2.110
|
2.567
|
2.898
|
3.222
|
3.646
|
3.965
|
18
|
0.688
|
0.862
|
1.067
|
1.330
|
1.734
|
2.101
|
2.552
|
2.878
|
3.197
|
3.610
|
3.922
|
19
|
0.688
|
0.861
|
1.066
|
1.328
|
1.729
|
2.093
|
2.539
|
2.861
|
3.174
|
3.579
|
3.883
|
20
|
0.687
|
0.860
|
1.064
|
1.325
|
1.725
|
2.086
|
2.528
|
2.845
|
3.153
|
3.552
|
3.850
|
21
|
0.686
|
0.859
|
1.063
|
1.323
|
1.721
|
2.080
|
2.518
|
2.831
|
3.135
|
3.527
|
3.819
|
22
|
0.686
|
0.858
|
1.061
|
1.321
|
1.717
|
2.074
|
2.508
|
2.819
|
3.119
|
3.505
|
3.792
|
23
|
0.685
|
0.858
|
1.060
|
1.319
|
1.714
|
2.069
|
2.500
|
2.807
|
3.104
|
3.485
|
3.767
|
24
|
0.685
|
0.857
|
1.059
|
1.318
|
1.711
|
2.064
|
2.492
|
2.797
|
3.091
|
3.467
|
3.745
|
25
|
0.684
|
0.856
|
1.058
|
1.316
|
1.708
|
2.060
|
2.485
|
2.787
|
3.078
|
3.450
|
3.725
|
26
|
0.684
|
0.856
|
1.058
|
1.315
|
1.706
|
2.056
|
2.479
|
2.779
|
3.067
|
3.435
|
3.707
|
27
|
0.684
|
0.855
|
1.057
|
1.314
|
1.703
|
2.052
|
2.473
|
2.771
|
3.057
|
3.421
|
3.690
|
28
|
0.683
|
0.855
|
1.056
|
1.313
|
1.701
|
2.048
|
2.467
|
2.763
|
3.047
|
3.408
|
3.674
|
29
|
0.683
|
0.854
|
1.055
|
1.311
|
1.699
|
2.045
|
2.462
|
2.756
|
3.038
|
3.396
|
3.659
|
30
|
0.683
|
0.854
|
1.055
|
1.310
|
1.697
|
2.042
|
2.457
|
2.750
|
3.030
|
3.385
|
3.646
|
40
|
0.681
|
0.851
|
1.050
|
1.303
|
1.684
|
2.021
|
2.423
|
2.704
|
2.971
|
3.307
|
3.551
|
50
|
0.679
|
0.849
|
1.047
|
1.299
|
1.676
|
2.009
|
2.403
|
2.678
|
2.937
|
3.261
|
3.496
|
60
|
0.679
|
0.848
|
1.045
|
1.296
|
1.671
|
2.000
|
2.390
|
2.660
|
2.915
|
3.232
|
3.460
|
80
|
0.678
|
0.846
|
1.043
|
1.292
|
1.664
|
1.990
|
2.374
|
2.639
|
2.887
|
3.195
|
3.416
|
100
|
0.677
|
0.845
|
1.042
|
1.290
|
1.660
|
1.984
|
2.364
|
2.626
|
2.871
|
3.174
|
3.390
|
120
|
0.677
|
0.845
|
1.041
|
1.289
|
1.658
|
1.980
|
2.358
|
2.617
|
2.860
|
3.160
|
3.373
|
0.674
|
0.842
|
1.036
|
1.282
|
1.645
|
1.960
|
2.326
|
2.576
|
2.807
|
3.090
|
3.291
|