Spark Streaming性能優化: 如何在生產環境下應對流數據峰值巨變


1、為什么引入Backpressure

      默認情況下,Spark Streaming通過Receiver以生產者生產數據的速率接收數據,計算過程中會出現batch processing time > batch interval的情況,其中batch processing time 為實際計算一個批次花費時間, batch interval為Streaming應用設置的批處理間隔。這意味着Spark Streaming的數據接收速率高於Spark從隊列中移除數據的速率,也就是數據處理能力低,在設置間隔內不能完全處理當前接收速率接收的數據。如果這種情況持續過長的時間,會造成數據在內存中堆積,導致Receiver所在Executor內存溢出等問題(如果設置StorageLevel包含disk, 則內存存放不下的數據會溢寫至disk, 加大延遲)。Spark 1.5以前版本,用戶如果要限制Receiver的數據接收速率,可以通過設置靜態配制參數“spark.streaming.receiver.maxRate
”的值來實現,此舉雖然可以通過限制接收速率,來適配當前的處理能力,防止內存溢出,但也會引入其它問題。比如:producer數據生產高於maxRate,當前集群處理能力也高於maxRate,這就會造成資源利用率下降等問題。為了更好的協調數據接收速率與資源處理能力,Spark Streaming 從v1.5開始引入反壓機制(back-pressure),通過動態控制數據接收速率來適配集群數據處理能力。
2、Backpressure
      Spark Streaming Backpressure: 根據JobScheduler反饋作業的執行信息來動態調整Receiver數據接收率。通過屬性“spark.streaming.backpressure.enabled”來控制是否啟用backpressure機制,默認值false,即不啟用。
2.1 Streaming架構如下圖所示(詳見Streaming數據接收過程文檔和Streaming 源碼解析)



2.2 BackPressure執行過程如下圖所示:
  在原架構的基礎上加上一個新的組件RateController,這個組件負責監聽“OnBatchCompleted”事件,然后從中抽取processingDelay 及schedulingDelay信息. Estimator依據這些信息估算出最大處理速度(rate),最后由基於Receiver的Input Stream將rate通過ReceiverTracker與ReceiverSupervisorImpl轉發給BlockGenerator(繼承自RateLimiter).

3、BackPressure 源碼解析
3.1 RateController類體系
RatenController 繼承自StreamingListener. 用於處理BatchCompleted事件。核心代碼為:

**
 * A StreamingListener that receives batch completion     updates, and maintains
 * an estimate of the speed at which this stream should ingest messages,
 * given an estimate computation from a `RateEstimator`
 */
private[streaming] abstract class RateController(val streamUID: Int, rateEstimator: RateEstimator)
extends StreamingListener with Serializable {
  /**
   * Compute the new rate limit and publish it asynchronously.
   */
  private def computeAndPublish(time: Long, elems: Long, workDelay: Long, waitDelay: Long): Unit =
Future[Unit] {
  val newRate = rateEstimator.compute(time, elems, workDelay, waitDelay)
  newRate.foreach { s =>
    rateLimit.set(s.toLong)
    publish(getLatestRate())
  }
}
def getLatestRate(): Long = rateLimit.get()

override def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted) {
val elements = batchCompleted.batchInfo.streamIdToInputInfo
for {
  processingEnd <- batchCompleted.batchInfo.processingEndTime
  workDelay <- batchCompleted.batchInfo.processingDelay
  waitDelay <- batchCompleted.batchInfo.schedulingDelay
  elems <- elements.get(streamUID).map(_.numRecords)
} computeAndPublish(processingEnd, elems, workDelay, waitDelay)
}
}

3.2 RateController的注冊
JobScheduler啟動時會抽取在DStreamGraph中注冊的所有InputDstream中的rateController,並向ListenerBus注冊監聽. 此部分代碼如下:

def start(): Unit = synchronized {
   if (eventLoop != null) return // scheduler has already been started

   logDebug("Starting JobScheduler")
   eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") {
   override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event)

   override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e)
 }
 eventLoop.start()

 // attach rate controllers of input streams to receive batch completion updates
 for {
   inputDStream <- ssc.graph.getInputStreams
   rateController <- inputDStream.rateController
 } ssc.addStreamingListener(rateController)</span>

 listenerBus.start()
 receiverTracker = new ReceiverTracker(ssc)
 inputInfoTracker = new InputInfoTracker(ssc)
 receiverTracker.start()
 jobGenerator.start()
 logInfo("Started JobScheduler")
}

3.3 BackPressure執行過程分析
BackPressure 執行過程分為BatchCompleted事件觸發時機和事件處理兩個過程
3.3.1 BatchCompleted觸發過程
對BatchedCompleted的分析,應該從JobGenerator入手,因為BatchedCompleted是批次處理結束的標志,也就是JobGenerator產生的作業執行完成時觸發的,因此進行作業執行分析。
Streaming 應用中JobGenerator每個Batch Interval都會為應用中的每個Output Stream建立一個Job, 該批次中的所有Job組成一個Job Set.使用JobScheduler的submitJobSet進行批量Job提交。此部分代碼結構如下所示

 /** Generate jobs and perform checkpoint for the given `time`.  */
private def generateJobs(time: Time) {
  // Set the SparkEnv in this thread, so that job generation code can access the environment
  // Example: BlockRDDs are created in this thread, and it needs to access BlockManager
  // Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.
  SparkEnv.set(ssc.env)

  // Checkpoint all RDDs marked for checkpointing to ensure their lineages are
  // truncated periodically. Otherwise, we may run into stack overflows (SPARK-6847).
  ssc.sparkContext.setLocalProperty(RDD.CHECKPOINT_ALL_MARKED_ANCESTORS, "true")
  Try {
    jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
    graph.generateJobs(time) // generate jobs using allocated block
  } match {
    case Success(jobs) =>
      val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
    case Failure(e) =>
      jobScheduler.reportError("Error generating jobs for time " + time, e)
}
eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
}

其中,sumitJobSet會創建固定數量的后台線程(具體由“spark.streaming.concurrentJobs”指定),去處理Job Set中的Job. 具體實現邏輯為:

def submitJobSet(jobSet: JobSet) {
  if (jobSet.jobs.isEmpty) {
    logInfo("No jobs added for time " + jobSet.time)
  } else {
    listenerBus.post(StreamingListenerBatchSubmitted(jobSet.toBatchInfo))
    jobSets.put(jobSet.time, jobSet)
    jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))
    logInfo("Added jobs for time " + jobSet.time)
  }
}

其中JobHandler用於執行Job及處理Job執行結果信息。當Job執行完成時會產生JobCompleted事件. JobHandler的具體邏輯如下面代碼所示:

當Job執行完成時,向eventLoop發送JobCompleted事件。EventLoop事件處理器接到JobCompleted事件后將調用handleJobCompletion 來處理Job完成事件。handleJobCompletion使用Job執行信息創建StreamingListenerBatchCompleted事件並通過StreamingListenerBus向監聽器發送。實現如下:

private def handleJobCompletion(job: Job, completedTime: Long) {
   val jobSet = jobSets.get(job.time)
   jobSet.handleJobCompletion(job)
   job.setEndTime(completedTime)
   listenerBus.post(StreamingListenerOutputOperationCompleted(job.toOutputOperationInfo))
   logInfo("Finished job " + job.id + " from job set of time " + jobSet.time)
   if (jobSet.hasCompleted) {
     jobSets.remove(jobSet.time)
     jobGenerator.onBatchCompletion(jobSet.time)
     logInfo("Total delay: %.3f s for time %s (execution: %.3f s)".format(
     jobSet.totalDelay / 1000.0, jobSet.time.toString,
     jobSet.processingDelay / 1000.0
   ))
 listenerBus.post(StreamingListenerBatchCompleted(jobSet.toBatchInfo))
 }
 job.result match {
   case Failure(e) =>
       reportError("Error running job " + job, e)
   case _ =>
 }
}

3.3.2、BatchCompleted事件處理過程
StreamingListenerBus將事件轉交給具體的StreamingListener,因此BatchCompleted將交由RateController進行處理。RateController接到BatchCompleted事件后將調用onBatchCompleted對事件進行處理。

override def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted) {
  val elements = batchCompleted.batchInfo.streamIdToInputInfo

  for {
    processingEnd <- batchCompleted.batchInfo.processingEndTime
    workDelay <- batchCompleted.batchInfo.processingDelay
    waitDelay <- batchCompleted.batchInfo.schedulingDelay
    elems <- elements.get(streamUID).map(_.numRecords)
  } computeAndPublish(processingEnd, elems, workDelay, waitDelay)
}

onBatchCompleted會從完成的任務中抽取任務的執行延遲和調度延遲,然后用這兩個參數用RateEstimator(目前存在唯一實現PIDRateEstimator,proportional-integral-derivative (PID) controller, PID控制器)估算出新的rate並發布。代碼如下:

/**
   * Compute the new rate limit and publish it asynchronously.
   */
  private def computeAndPublish(time: Long, elems: Long, workDelay: Long, waitDelay: Long): Unit =
Future[Unit] {
  val newRate = rateEstimator.compute(time, elems, workDelay, waitDelay)
  newRate.foreach { s =>
    rateLimit.set(s.toLong)
    publish(getLatestRate())
  }
}

其中publish()由RateController的子類ReceiverRateController來定義。具體邏輯如下(ReceiverInputDStream中定義):

/**
   * A RateController that sends the new rate to receivers, via the receiver tracker.
   */
 private[streaming] class ReceiverRateController(id: Int, estimator: RateEstimator)
  extends RateController(id, estimator) {
  override def publish(rate: Long): Unit =
    ssc.scheduler.receiverTracker.sendRateUpdate(id, rate)
}

publish的功能為新生成的rate 借助ReceiverTracker進行轉發。ReceiverTracker將rate包裝成UpdateReceiverRateLimit事交ReceiverTrackerEndpoint

/** Update a receiver's maximum ingestion rate */
def sendRateUpdate(streamUID: Int, newRate: Long):   Unit = synchronized {
  if (isTrackerStarted) {
    endpoint.send(UpdateReceiverRateLimit(streamUID, newRate))
  }
}

ReceiverTrackerEndpoint接到消息后,其將會從receiverTrackingInfos列表中獲取Receiver注冊時使用的endpoint(實為ReceiverSupervisorImpl),再將rate包裝成UpdateLimit發送至endpoint.其接到信息后,使用updateRate更新BlockGenerators(RateLimiter子類),來計算出一個固定的令牌間隔。

其中RateLimiter的updateRate實現如下:

/**
  * Set the rate limit to `newRate`. The new rate will not exceed the maximum rate configured by
  * {{{spark.streaming.receiver.maxRate}}}, even if `newRate` is higher than that.
  *
  * @param newRate A new rate in events per second. It has no effect if it's 0 or negative.
  */
 private[receiver] def updateRate(newRate: Long): Unit =
   if (newRate > 0) {
   if (maxRateLimit > 0) {
     rateLimiter.setRate(newRate.min(maxRateLimit))
   } else {
     rateLimiter.setRate(newRate)
   }
 }

setRate的實現如下:

public final void setRate(double permitsPerSecond) {
  Preconditions.checkArgument(permitsPerSecond > 0.0
    && !Double.isNaN(permitsPerSecond), "rate must be positive");
  synchronized (mutex) {
    resync(readSafeMicros());
    double stableIntervalMicros = TimeUnit.SECONDS.toMicros(1L) / permitsPerSecond;  //固定間隔
    this.stableIntervalMicros = stableIntervalMicros;
    doSetRate(permitsPerSecond, stableIntervalMicros);
  }
}

到此,backpressure反壓機制調整rate結束。

4.流量控制點
  當Receiver開始接收數據時,會通過supervisor.pushSingle()方法將接收的數據存入currentBuffer等待BlockGenerator定時將數據取走,包裝成block. 在將數據存放入currentBuffer之時,要獲取許可(令牌)。如果獲取到許可就可以將數據存入buffer, 否則將被阻塞,進而阻塞Receiver從數據源拉取數據。

  /**
   * Push a single data item into the buffer.
   */
  def addData(data: Any): Unit = {
      if (state == Active) {
         waitToPush()  //獲取令牌
        synchronized {
          if (state == Active) {
            currentBuffer += data
          } else {
            throw new SparkException(
        "Cannot add data as BlockGenerator has not been started or has been stopped")
          }
        }
      } else {
        throw new SparkException(
    "Cannot add data as BlockGenerator has not been started or has been stopped")
}

其令牌投放采用令牌桶機制進行, 原理如下圖所示:

令牌桶機制: 大小固定的令牌桶可自行以恆定的速率源源不斷地產生令牌。如果令牌不被消耗,或者被消耗的速度小於產生的速度,令牌就會不斷地增多,直到把桶填滿。后面再產生的令牌就會從桶中溢出。最后桶中可以保存的最大令牌數永遠不會超過桶的大小。當進行某操作時需要令牌時會從令牌桶中取出相應的令牌數,如果獲取到則繼續操作,否則阻塞。用完之后不用放回。
  Streaming 數據流被Receiver接收后,按行解析后存入iterator中。然后逐個存入Buffer,在存入buffer時會先獲取token,如果沒有token存在,則阻塞;如果獲取到則將數據存入buffer. 然后等價后續生成block操作。


  令牌桶機制: 大小固定的令牌桶可自行以恆定的速率源源不斷地產生令牌。如果令牌不被消耗,或者被消耗的速度小於產生的速度,令牌就會不斷地增多,直到把桶填滿。后面再產生的令牌就會從桶中溢出。最后桶中可以保存的最大令牌數永遠不會超過桶的大小。當進行某操作時需要令牌時會從令牌桶中取出相應的令牌數,如果獲取到則繼續操作,否則阻塞。用完之后不用放回。
  Streaming 數據流被Receiver接收后,按行解析后存入iterator中。然后逐個存入Buffer,在存入buffer時會先獲取token,如果沒有token存在,則阻塞;如果獲取到則將數據存入buffer. 然后等價后續生成block操作。

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM