斯坦福大學CS224d課程目錄


https://www.zybuluo.com/hanxiaoyang/note/404582

Lecture 1:自然語言入門與次嵌入

  • 1.1 Intro to NLP and Deep Learning
  • 1.2 Simple Word Vector representations: word2vec, GloVe

Lecture 2:詞向量表示:語言模型,softmax分類器,單隱層神經網絡

  • 2.1 Advanced word vector representations: language models, softmax, single layer networks

Lecture 3:神經網絡與反向傳播:命名實體識別案例

  • 3.1 Neural Networks and backpropagation -- for named entity recognition

Lecture 4:神經網絡與反向傳播實踐與應用建議

  • 4.1 Project Advice, Neural Networks and Back-Prop (in full gory detail)

Lecture 5:實際應用技巧:梯度檢查,過擬合,正則化,激勵函數等等的細節

  • 5.1 Practical tips: gradient checks, overfitting, regularization, activation functions, details

Lecture 6:Tensorflow介紹

  • 6.1 Introduction to Tensorflow

Lecture 7:應用在語言模型和相關任務上的循環神經網絡

  • 7.1 Recurrent neural networks -- for language modeling and other tasks

Lecture 8:在機器翻譯等領域廣泛應用的GRU和LSTM

  • 8.1 GRUs and LSTMs -- for machine translation

Lecture 9:可用於文本解析的循環神經網絡

  • 9.1 Recursive neural networks -- for parsing

Lecture 10:用於其他任務(情感分析,段落分析等)上的循環神經網絡

  • 10.1 Recursive neural networks -- for different tasks (e.g. sentiment analysis)

Lecture 11:用於句子分類的卷積神經網絡

  • 11.1 Convolutional neural networks -- for sentence classification

Lecture 12:嘉賓講座:Andrew Maas講述語音識別

  • 12.1 Guest Lecture with Andrew Maas: Speech recognition

Lecture 13:嘉賓講座:Thang Luong講述機器翻譯

  • 13.1 Guest Lecture with Thang Luong: Machine Translation

Lecture 14:嘉賓講座:Quoc Le 講述序列到序列學習與大規模深度學習

  • 14.1 Guest Lecture with Quoc Le: Seq2Seq and Large Scale DL

Lecture 15:自然語言處理上深度學習前沿方向:動態記憶網絡

  • 15.1 The future of Deep Learning for NLP: Dynamic Memory Networks


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM