分布式應用系統中,經常會用到zk,比如dubbo注冊中心,kafka分布式集群等都用到zk這一工具。除了這些用來做分布式集群外,zk還有那西應用場景事我們可以使用到該工具的呢?所以接下來就是我們要了解的重點了。
首先在使用zk的各種應用之前,我們需要了解zk 的相關功能模塊,這樣才能讓我們更清晰的了解為什么可以這么去使用:
zookeeper以目錄樹的形式管理數據,提供znode監聽、數據設置等接口,基於這些接口,我們可以實現Leader選舉、配置管理、命名服務等功能,ZK提供了以下API,供client操作znode和znode中存儲的數據:
- create(path, data, flags):創建路徑為path的znode,在其中存儲data[]數據,flags可設置為Regular或Ephemeral,並可選打上sequential標志。
- delete(path, version):刪除相應path/version的znode
- exists(path,watch):如果存在path對應znode,則返回true;否則返回false,watch標志可設置監聽事件
- getData(path, watch):返回對應znode的數據和元信息(如version等)
- setData(path, data, version):將data[]數據寫入對應path/version的znode
- getChildren(path, watch):返回指定znode的子節點集合
1.統一服務器名稱
命名服務器事一個比較常用的應用場景,客戶端通過制定名字來獲取服務器資源獲或提供者信息等,被命名的可以服務器地址,遠程對象。通過zk提供的創建節點的api,很容易創建一個全局唯一的path,這個path就可以做一個名稱,
dubbo使用zk就是用來做服務器名稱。維護全局的服務地址列表。
服務提供者在啟動的時候,向ZK上的指定節點/dubbo/${serviceName}/providers目錄下寫入自己的URL地址,這個操作就完成了服務的發布。
服務消費者啟動的時候,訂閱/dubbo/${serviceName}/providers目錄下的提供者URL地址, 並向/dubbo/${serviceName} /consumers目錄下寫入自己的URL地址。
注意,所有向ZK上注冊的地址都是臨時節點,這樣就能夠保證服務提供者和消費者能夠自動感應資源的變化。 另外,Dubbo還有針對服務粒度的監控,方法是訂閱/dubbo/${serviceName}目錄下所有提供者和消費者的信息
2.統一配置管理
zk客戶端api提供了操作znode數據的功能。再分布式環境中我們可以配置文件存放在znode上,不同的服務需要使用到哪些配置的時候可以直接從znode上去獲取。而且通過zk 的心跳極值,我們的配置文件是可以做到動態配置的。一般的配置中心的做法是在系統啟動之后加載我們的內存當中,一但配置文件需要做響應的調整的時候,需要重啟服務進行load配置操作,但是很多的場景事我們只需要更改一點點的內容就去重啟服務,代價不可謂不大。但zk就可以避免這問題的發生,當配置文件發生改變的時候,watch為通知到我們的服務對其修改操作。
3.分布式通知/協調
ZooKeeper中特有watcher注冊與異步通知機制,能夠很好的實現分布式環境下不同系統之間的通知與協調,實現對數據變更的實時處理。使用方法通常是不同系統都對ZK上同一個znode進行注冊,監聽znode的變化(包括znode本身內容及子節點的),其中一個系統update了znode,那么另一個系統能夠收到通知,並作出相應處理
1. 另一種心跳檢測機制:檢測系統和被檢測系統之間並不直接關聯起來,而是通過zk上某個節點關聯,大大減少系統耦合。
2. 另一種系統調度模式:某系統有控制台和推送系統兩部分組成,控制台的職責是控制推送系統進行相應的推送工作。管理人員在控制台作的一些操作,實際上是修改了ZK上某些節點的狀態,而ZK就把這些變化通知給他們注冊Watcher的客戶端,即推送系統,於是,作出相應的推送任務。
3. 另一種工作匯報模式:一些類似於任務分發系統,子任務啟動后,到zk來注冊一個臨時節點,並且定時將自己的進度進行匯報(將進度寫回這個臨時節點),這樣任務管理者就能夠實時知道任務進度。
總之,使用zookeeper來進行分布式通知和協調能夠大大降低系統之間的耦合
4.共享鎖
分布式鎖,這個主要得益於ZooKeeper為我們保證了數據的強一致性。鎖服務可以分為兩類,一個是 保持獨占,另一個是 控制時序。
1. 所謂保持獨占,就是所有試圖來獲取這個鎖的客戶端,最終只有一個可以成功獲得這把鎖。通常的做法是把zk上的一個znode看作是一把鎖,通過create znode的方式來實現。所有客戶端都去創建 /distribute_lock 節點,最終成功創建的那個客戶端也即擁有了這把鎖。
2. 控制時序,就是所有視圖來獲取這個鎖的客戶端,最終都是會被安排執行,只是有個全局時序了。做法和上面基本類似,只是這里 /distribute_lock 已經預先存在,客戶端在它下面創建臨時有序節點(這個可以通過節點的屬性控制:CreateMode.EPHEMERAL_SEQUENTIAL來指定)。Zk的父節點(/distribute_lock)維持一份sequence,保證子節點創建的時序性,從而也形成了每個客戶端的全局時序。
5.隊列管理
隊列方面,簡單地講有兩種,一種是常規的先進先出隊列,另一種是要等到隊列成員聚齊之后的才統一按序執行。對於第一種先進先出隊列,和分布式鎖服務中的控制時序場景基本原理一致,這里不再贅述。 第二種隊列其實是在FIFO隊列的基礎上作了一個增強。通常可以在 /queue 這個znode下預先建立一個/queue/num 節點,並且賦值為n(或者直接給/queue賦值n),表示隊列大小,之后每次有隊列成員加入后,就判斷下是否已經到達隊列大小,決定是否可以開始執行了。這種用法的典型場景是,分布式環境中,一個大任務Task A,需要在很多子任務完成(或條件就緒)情況下才能進行。這個時候,凡是其中一個子任務完成(就緒),那么就去 /taskList 下建立自己的臨時時序節點(CreateMode.EPHEMERAL_SEQUENTIAL),當 /taskList 發現自己下面的子節點滿足指定個數,就可以進行下一步按序進行處理了。
6.master選舉
在分布式環境中,相同的業務應用分布在不同的機器上,有些業務邏輯(例如一些耗時的計算,網絡I/O處理),往往只需要讓整個集群中的某一台機器進行執行,其余機器可以共享這個結果,這樣可以大大減少重復勞動,提高性能,於是這個master選舉便是這種場景下的碰到的主要問題。
利用ZooKeeper的強一致性,能夠保證在分布式高並發情況下節點創建的全局唯一性,即:同時有多個客戶端請求創建 /currentMaster 節點,最終一定只有一個客戶端請求能夠創建成功。利用這個特性,就能很輕易的在分布式環境中進行集群選取了。
另外,這種場景演化一下,就是動態Master選舉。這就要用到EPHEMERAL_SEQUENTIAL類型節點的特性了。
上文中提到,所有客戶端創建請求,最終只有一個能夠創建成功。在這里稍微變化下,就是允許所有請求都能夠創建成功,但是得有個創建順序,於是所有的請求最終在ZK上創建結果的一種可能情況是這樣: /currentMaster/{sessionId}-1 ,/currentMaster/{sessionId}-2,/currentMaster/{sessionId}-3 ….. 每次選取序列號最小的那個機器作為Master,如果這個機器掛了,由於他創建的節點會馬上小時,那么之后最小的那個機器就是Master了。
1. 在搜索系統中,如果集群中每個機器都生成一份全量索引,不僅耗時,而且不能保證彼此之間索引數據一致。因此讓集群中的Master來進行全量索引的生成,然后同步到集群中其它機器。另外,Master選舉的容災措施是,可以隨時進行手動指定master,就是說應用在zk在無法獲取master信息時,可以通過比如http方式,向一個地方獲取master。
2. 在Hbase中,也是使用ZooKeeper來實現動態HMaster的選舉。在Hbase實現中,會在ZK上存儲一些ROOT表的地址和HMaster的地址,HRegionServer也會把自己以臨時節點(Ephemeral)的方式注冊到Zookeeper中,使得HMaster可以隨時感知到各個HRegionServer的存活狀態,同時,一旦HMaster出現問題,會重新選舉出一個HMaster來運行,從而避免了HMaster的單點問題
附上zk負載均衡響應的實現代碼
1.權重輪詢模式

package com.samp.zk.balance; import java.math.BigInteger; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Map.Entry; import java.util.concurrent.atomic.AtomicInteger; import com.alibaba.fastjson.JSONObject; public class RoundRobin { private int currentIndex = -1;// 當前位置 private int currentWeight = 0 ;//當前權重 private int maxGcd = 0 ; //最大權重數 private int maxWeight = 0;// 最大公約數 private int servetCount = 0 ;// 總服務器數量 private List<Server> serverLst; // 服務器列表 private int gcd (int a , int b){ BigInteger b1 = new BigInteger(String.valueOf(a)); BigInteger b2 = new BigInteger(String.valueOf(b)); BigInteger result = b1.gcd(b2); return result.intValue(); } private int getMaxCurrentGcd (List<Server> serverList){ int result = 0 ; for(int i = 0,len = serverLst.size();i< len -1 ;i++){ if(result == 0){ result = gcd(serverLst.get(i).weight, serverLst.get(i+1).weight); }else{ result = gcd (result,serverLst.get(i+1).weight); } } return result; } private int getMaxCurrentWeight(List<Server> serverList){ int result = 0 ; for(int i = 0,len = serverLst.size();i< len -1 ;i++){ if( result ==0 ){ result = Math.max(serverLst.get(i).weight, serverLst.get(i+1).weight); }else{ result= Math.max(result, serverLst.get(i).weight); } } return result ; } public static void main(String[] args){ RoundRobin obj =new RoundRobin(); obj.init(); Map<String,Integer> map = new HashMap<String,Integer>(); for(int i=0;i<100;i++){ Server ser = obj.getServer(); String ip = ser.getIp(); if(map.containsKey(ip)){ map.put(ip, map.get(ip)+1); }else{ map.put(ip, 1); } } for (Entry<String, Integer> m: map.entrySet()) { System.out.println("服務器 " + m.getKey() + " 請求次數: " + m.getValue()); } } /** * * @Title: getServer * @Description: 服務獲取方式: * 1.初始化開始位置為-1,權重是0, * 2.第1次輪詢獲取服務器未當前服務器權重最高的 * 3.第2次輪詢權重遞減1,獲取有大於等於該權限的服務器 * 4.重復第3步,直到權重為最小值0時,從第1步開始從新輪詢 * @return 參數說明 * @return Server 返回類型 */ public Server getServer(){ while (true){ currentIndex = (currentIndex + 1) % servetCount; if(currentIndex ==0 ){ currentWeight = currentWeight - maxGcd; if(currentWeight <= 0 ){ currentWeight = maxWeight ; if(currentWeight == 0 ) return null; } } if(serverLst.get(currentIndex).weight >= currentWeight ){ return serverLst.get(currentIndex); } } } public Server getServerBy(){ return null; } public Server getServerFromDubbo(){ AtomicInteger sequence = new AtomicInteger(1); int maxWeight = 0; // 最大權重 int minWeight = Integer.MAX_VALUE; // 最小權重 int weightSum = 0; Map<String,Integer> map = new HashMap<String,Integer>(); for (int i = 0; i < serverLst.size(); i++) { int weight = serverLst.get(i).weight; String ip = serverLst.get(i).getIp(); maxWeight = Math.max(maxWeight, weight); // 累計最大權重 minWeight = Math.min(minWeight, weight); // 累計最小權重 if (weight > 0) { map.put(ip, weight); weightSum += weight; } } System.out.println("============"+JSONObject.toJSON(map)+"======"+weightSum); int currentSequence = sequence.getAndIncrement(); if (maxWeight > 0 && minWeight < maxWeight) { // 權重不一樣 int mod = currentSequence % weightSum; for (int i = 0; i < maxWeight; i++) { for (Map.Entry<String,Integer> each : map.entrySet()) { final String ip = each.getKey(); final Integer v = each.getValue(); if (mod == 0 && v > 0) { return new Server(ip, v); } if (v > 0) { mod--; } } } } return null; } public void getServer2(){ List<String> lst = new ArrayList<String>(); for (int i = 0; i < maxWeight; i++) { for (Server ser :serverLst) { final String ip = ser.getIp(); int num = ser.getWeight(); if((num -1 )>0){ continue; } lst.add(ip); } } } private List<Server> getNewList(List<Server> sers){ List<Server> l = new ArrayList<Server>(); for(Server ser:sers){ String ip = ser.getIp(); int weight = ser.getWeight()-1; Server s = new Server(ip, weight); l.add(s); } return l; } public void init2(){ Server s11 = new Server("127.0.0.1", 1); Server s12 = new Server("127.0.0.1", 1); Server s13 = new Server("127.0.0.1", 1); Server s21 = new Server("127.0.0.2", 1); Server s31 = new Server("127.0.0.3", 1); Server s32 = new Server("127.0.0.3", 1); Server s41 = new Server("127.0.0.4", 1); Server s42 = new Server("127.0.0.4", 1); Server s51 = new Server("127.0.0.5", 1); Server s52 = new Server("127.0.0.5", 1); Server s53 = new Server("127.0.0.5", 1); Server s54 = new Server("127.0.0.5", 1); serverLst = new ArrayList<Server>(); serverLst.add(s11); serverLst.add(s12); serverLst.add(s13); serverLst.add(s21); serverLst.add(s31); serverLst.add(s32); serverLst.add(s41); serverLst.add(s42); serverLst.add(s53); serverLst.add(s54); serverLst.add(s51); serverLst.add(s52); maxWeight = getMaxCurrentWeight(serverLst); } public void init(){ Server s1 = new Server("127.0.0.1", 3); Server s2 = new Server("127.0.0.2", 1); Server s3 = new Server("127.0.0.3", 2); Server s4 = new Server("127.0.0.4", 2); Server s5 = new Server("127.0.0.5", 4); serverLst = new ArrayList<Server>(); serverLst.add(s1); serverLst.add(s2); serverLst.add(s3); serverLst.add(s4); serverLst.add(s5); maxGcd = getMaxCurrentGcd(serverLst); maxWeight = getMaxCurrentWeight(serverLst); currentIndex = -1 ; currentWeight = 0 ; servetCount = serverLst.size(); } public int getCurrentIndex() { return currentIndex; } public void setCurrentIndex(int currentIndex) { this.currentIndex = currentIndex; } public int getCurrentWeight() { return currentWeight; } public void setCurrentWeight(int currentWeight) { this.currentWeight = currentWeight; } public int getMaxGcd() { return maxGcd; } public void setMaxGcd(int maxGcd) { this.maxGcd = maxGcd; } public int getMaxWeight() { return maxWeight; } public void setMaxWeight(int maxWeight) { this.maxWeight = maxWeight; } public int getServetCount() { return servetCount; } public void setServetCount(int servetCount) { this.servetCount = servetCount; } class Server { private String ip; private int weight; public Server(String ip, int weight) { super(); this.ip = ip; this.weight = weight; } public String getIp() { return ip; } public void setIp(String ip) { this.ip = ip; } public int getWeight() { return weight; } public void setWeight(int weight) { this.weight = weight; } } }
2.隨機分配
package com.samp.zk.balance; import java.util.List; import java.util.Random; import org.I0Itec.zkclient.ZkClient; /** * @ClassName RandomLoadBalance * @Description 隨機方式實現負載均衡 * @author hezc * @date 2017年2月14日 * */ public class RandomLoadBalance implements LoadBalance { @Override public String select(String zkServer) { ZkClient zkClient = new ZkClient(zkServer); List<String> serverList = zkClient.getChildren(Constant.root); zkClient.close(); Random r=new Random(); if(serverList.size()>=1){ String server=serverList.get(r.nextInt(serverList.size())); return server; }else{ return null; } } }
3.一致hash

package com.samp.zk.balance; import java.io.UnsupportedEncodingException; import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; import java.util.List; import org.I0Itec.zkclient.ZkClient; /** * @ClassName ConsistentHashLoadBalance * @Description 一致hash實現zk負載均衡 * @author hezc * @date 2017年2月13日 * */ public class ConsistentHashLoadBalance implements LoadBalance { private String client; public void SetClient(String client){ this.client=client; } @Override public String select(String zkServer) { ZkClient zkClient = new ZkClient(zkServer); List<String> serverList = zkClient.getChildren(Constant.root); ConsistentHashSelector selector=new ConsistentHashSelector(client,serverList); return selector.select(); } private static final class ConsistentHashSelector { public ConsistentHashSelector(String client,List<String> appServer){ this.client=client; this.appServer=appServer; } private String client; private List<String> appServer; public String select() { String key =client ; byte[] digest = md5(key); String server =appServer.get((int) hash(digest, 0)); return server; } private long hash(byte[] digest, int number) { return (((long) (digest[3 + number * 4] & 0xFF) << 24) | ((long) (digest[2 + number * 4] & 0xFF) << 16) | ((long) (digest[1 + number * 4] & 0xFF) << 8) | (digest[0 + number * 4] & 0xFF)) & 0xFFFFFFFFL; } private byte[] md5(String value) { MessageDigest md5; try { md5 = MessageDigest.getInstance("MD5"); } catch (NoSuchAlgorithmException e) { throw new IllegalStateException(e.getMessage(), e); } md5.reset(); byte[] bytes = null; try { bytes = value.getBytes("UTF-8"); } catch (UnsupportedEncodingException e) { throw new IllegalStateException(e.getMessage(), e); } md5.update(bytes); return md5.digest(); } } }
4.最小活動優先

package com.samp.zk.balance; import java.util.List; import org.I0Itec.zkclient.ZkClient; /** * @ClassName LeastActiveLoadBalance * @Description TODO * @author hezc * @date 2017年2月14日 * */ public class LeastActiveLoadBalance implements LoadBalance { @Override public String select(String zkServer) { ZkClient zkClient = new ZkClient(zkServer); List<String> serverList = zkClient.getChildren(Constant.root); String tempServer = null; int tempConn = -1; for (int i = 0; i < serverList.size(); i++) { String server = serverList.get(i); if (zkClient.readData(Constant.root + "/" + server) != null) { int connNum = zkClient.readData(Constant.root + "/" + server); if (tempConn == -1) { tempServer = server; tempConn = connNum; } if (connNum < tempConn) { tempServer = server; tempConn = connNum; } }else{ zkClient.close(); return server; } } zkClient.close(); if (tempServer != null && !tempServer.equals("")) { return tempServer; } return null; } }