Java:ConcurrentHashMap的鎖分段技術


術語定義

術語 英文 解釋
哈希算法 hash algorithm 是一種將任意內容的輸入轉換成相同長度輸出的加密方式,其輸出被稱為哈希值。 
哈希表 hash table 根據設定的哈希函數H(key)和處理沖突方法將一組關鍵字映象到一個有限的地址區間上,並以關鍵字在地址區間中的象作為記錄在表中的存儲位置,這種表稱為哈希表或散列,所得存儲位置稱為哈希地址或散列地址。

線程不安全的HashMap

因為多線程環境下,使用Hashmap進行put操作會引起死循環,導致CPU利用率接近100%,所以在並發情況下不能使用HashMap。

如以下代碼:

01 final HashMap<String, String> map = new HashMap<String, String>(2);
02  
03         Thread t = new Thread(new Runnable() {
04  
05             @Override
06  
07             public void run() {
08  
09                 for (int i = 0; i < 10000; i++) {
10  
11                     new Thread(new Runnable() {
12  
13                         @Override
14  
15                         public void run() {
16  
17                             map.put(UUID.randomUUID().toString(), "");
18  
19                         }
20  
21                     }, "ftf" + i).start();
22  
23                 }
24  
25             }
26  
27         }, "ftf");
28  
29         t.start();
30  
31         t.join();

效率低下的HashTable容器

     HashTable容器使用synchronized來保證線程安全,但在線程競爭激烈的情況下HashTable的效率非常低下。因為當一個線程訪問HashTable的同步方法時,其他線程訪問HashTable的同步方法時,可能會進入阻塞或輪詢狀態。如線程1使用put進行添加元素,線程2不但不能使用put方法添加元素,並且也不能使用get方法來獲取元素,所以競爭越激烈效率越低。

ConcurrentHashMap的鎖分段技術

     ConcurrentHashMap是Java 5中支持高並發、高吞吐量的線程安全HashMap實現。

     HashTable容器在競爭激烈的並發環境下表現出效率低下的原因,是因為所有訪問HashTable的線程都必須競爭同一把鎖,那假如容器里有多把鎖,每一把鎖用於鎖容器其中一部分數據,那么當多線程訪問容器里不同數據段的數據時,線程間就不會存在鎖競爭,從而可以有效的提高並發訪問效率,這就是ConcurrentHashMap所使用的鎖分段技術,首先將數據分成一段一段的存儲,然后給每一段數據配一把鎖,當一個線程占用鎖訪問其中一個段數據的時候,其他段的數據也能被其他線程訪問。

ConcurrentHashMap的結構

我們通過ConcurrentHashMap的類圖來分析ConcurrentHashMap的結構。
ConcurrentHashMap類圖
ConcurrentHashMap是由Segment數組結構和HashEntry數組結構組成。Segment是一種可重入鎖ReentrantLock,在ConcurrentHashMap里扮演鎖的角色,HashEntry則用於存儲鍵值對數據。一個ConcurrentHashMap里包含一個Segment數組,Segment的結構和HashMap類似,是一種數組和鏈表結構, 一個Segment里包含一個HashEntry數組,每個HashEntry是一個鏈表結構的元素, 每個Segment守護者一個HashEntry數組里的元素,當對HashEntry數組的數據進行修改時,必須首先獲得它對應的Segment鎖。
ConcurrentHashMap結構圖
 

ConcurrentHashMap的初始化

ConcurrentHashMap初始化方法是通過initialCapacity,loadFactor, concurrencyLevel幾個參數來初始化segments數組,段偏移量segmentShift,段掩碼segmentMask和每個segment里的HashEntry數組。

初始化segments數組。讓我們來看一下初始化segmentShift,segmentMask和segments數組的源代碼。

01 if (concurrencyLevel > MAX_SEGMENTS)
02  
03 concurrencyLevel = MAX_SEGMENTS;
04  
05 // Find power-of-two sizes best matching arguments
06  
07 int sshift = 0;
08  
09 int ssize = 1;
10  
11 while (ssize < concurrencyLevel) {
12  
13 ++sshift;
14  
15 ssize <<= 1;
16  
17 }
18  
19 segmentShift = 32 - sshift;
20  
21 segmentMask = ssize - 1;
22  
23 this.segments = Segment.newArray(ssize);

由上面的代碼可知segments數組的長度ssize通過concurrencyLevel計算得出。為了能通過按位與的哈希算法來定位segments數組的索引,必須保證segments數組的長度是2的N次方(power-of-two size),所以必須計算出一個是大於或等於concurrencyLevel的最小的2的N次方值來作為segments數組的長度。假如concurrencyLevel等於14,15或16,ssize都會等於16,即容器里鎖的個數也是16。注意concurrencyLevel的最大大小是65535,意味着segments數組的長度最大為65536,對應的二進制是16位。

初始化segmentShift和segmentMask。這兩個全局變量在定位segment時的哈希算法里需要使用,sshift等於ssize從1向左移位的次數,在默認情況下concurrencyLevel等於16,1需要向左移位移動4次,所以sshift等於4。segmentShift用於定位參與hash運算的位數,segmentShift等於32減sshift,所以等於28,這里之所以用32是因為ConcurrentHashMap里的hash()方法輸出的最大數是32位的,后面的測試中我們可以看到這點。segmentMask是哈希運算的掩碼,等於ssize減1,即15,掩碼的二進制各個位的值都是1。因為ssize的最大長度是65536,所以segmentShift最大值是16,segmentMask最大值是65535,對應的二進制是16位,每個位都是1。

初始化每個Segment。輸入參數initialCapacity是ConcurrentHashMap的初始化容量,loadfactor是每個segment的負載因子,在構造方法里需要通過這兩個參數來初始化數組中的每個segment。

01 if (initialCapacity > MAXIMUM_CAPACITY)
02  
03           initialCapacity = MAXIMUM_CAPACITY;
04  
05       int c = initialCapacity / ssize;
06  
07       if (c * ssize < initialCapacity)
08  
09           ++c;
10  
11       int cap = 1;
12  
13       while (cap < c)
14  
15           cap <<= 1;
16  
17       for (int i = 0; i < this.segments.length; ++i)
18  
19           this.segments[i] = new Segment<K,V>(cap, loadFactor);

上面代碼中的變量cap就是segment里HashEntry數組的長度,它等於initialCapacity除以ssize的倍數c,如果c大於1,就會取大於等於c的2的N次方值,所以cap不是1,就是2的N次方。segment的容量threshold=(int)cap*loadFactor,默認情況下initialCapacity等於16,loadfactor等於0.75,通過運算cap等於1,threshold等於零。

定位Segment

既然ConcurrentHashMap使用分段鎖Segment來保護不同段的數據,那么在插入和獲取元素的時候,必須先通過哈希算法定位到Segment。可以看到ConcurrentHashMap會首先使用Wang/Jenkins hash的變種算法對元素的hashCode進行一次再哈希。

1 private static int hash(int h) {
2  
3 h += (h << 15) ^ 0xffffcd7d; h ^= (h >>> 10);
4  
5 h += (h << 3); h ^= (h >>> 6);
6  
7 h += (h << 2) + (h << 14); return h ^ (h >>> 16);
8  
9 }

再哈希,其目的是為了減少哈希沖突,使元素能夠均勻的分布在不同的Segment上,從而提高容器的存取效率。假如哈希的質量差到極點,那么所有的元素都在一個Segment中,不僅存取元素緩慢,分段鎖也會失去意義。我做了一個測試,不通過再哈希而直接執行哈希計算。

1 System.out.println(Integer.parseInt("0001111"2) & 15);
2  
3 System.out.println(Integer.parseInt("0011111"2) & 15);
4  
5 System.out.println(Integer.parseInt("0111111"2) & 15);
6  
7 System.out.println(Integer.parseInt("1111111"2) & 15);

計算后輸出的哈希值全是15,通過這個例子可以發現如果不進行再哈希,哈希沖突會非常嚴重,因為只要低位一樣,無論高位是什么數,其哈希值總是一樣。我們再把上面的二進制數據進行再哈希后結果如下,為了方便閱讀,不足32位的高位補了0,每隔四位用豎線分割下。

1 01000111011001111101101001001110
2  
3 11110111010000110000000110111000
4  
5 01110111011010010100011000111110
6  
7 10000011000000001100100000011010

可以發現每一位的數據都散列開了,通過這種再哈希能讓數字的每一位都能參加到哈希運算當中,從而減少哈希沖突。ConcurrentHashMap通過以下哈希算法定位segment。

默認情況下segmentShift為28,segmentMask為15,再哈希后的數最大是32位二進制數據,向右無符號移動28位,意思是讓高4位參與到hash運算中, (hash >>> segmentShift) & segmentMask的運算結果分別是4,15,7和8,可以看到hash值沒有發生沖突。

1 final Segment<K,V> segmentFor(int hash) {
2  
3         return segments[(hash >>> segmentShift) & segmentMask];
4  
5     }

ConcurrentHashMap的get操作

Segment的get操作實現非常簡單和高效。先經過一次再哈希,然后使用這個哈希值通過哈希運算定位到segment,再通過哈希算法定位到元素,代碼如下:

1 public V get(Object key) {
2  
3        int hash = hash(key.hashCode());
4  
5        return segmentFor(hash).get(key, hash);
6  
7    }

get操作的高效之處在於整個get過程不需要加鎖,除非讀到的值是空的才會加鎖重讀,我們知道HashTable容器的get方法是需要加鎖的,那么ConcurrentHashMap的get操作是如何做到不加鎖的呢?原因是它的get方法里將要使用的共享變量都定義成volatile,如用於統計當前Segement大小的count字段和用於存儲值的HashEntry的value。定義成volatile的變量,能夠在線程之間保持可見性,能夠被多線程同時讀,並且保證不會讀到過期的值,但是只能被單線程寫(有一種情況可以被多線程寫,就是寫入的值不依賴於原值),在get操作里只需要讀不需要寫共享變量count和value,所以可以不用加鎖。之所以不會讀到過期的值,是根據Java內存模型的happen before原則,對volatile字段的寫入操作先於讀操作,即使兩個線程同時修改和獲取volatile變量,get操作也能拿到最新的值,這是用volatile替換鎖的經典應用場景。

1 transient volatile int count;
2  
3 volatile V value;

在定位元素的代碼里我們可以發現定位HashEntry和定位Segment的哈希算法雖然一樣,都與數組的長度減去一相與,但是相與的值不一樣,定位Segment使用的是元素的hashcode通過再哈希后得到的值的高位,而定位HashEntry直接使用的是再哈希后的值。其目的是避免兩次哈希后的值一樣,導致元素雖然在Segment里散列開了,但是卻沒有在HashEntry里散列開。

1 hash >>> segmentShift) & segmentMask//定位Segment所使用的hash算法
2  
3 int index = hash & (tab.length - 1);// 定位HashEntry所使用的hash算法

ConcurrentHashMap的Put操作

由於put方法里需要對共享變量進行寫入操作,所以為了線程安全,在操作共享變量時必須得加鎖。Put方法首先定位到Segment,然后在Segment里進行插入操作。插入操作需要經歷兩個步驟,第一步判斷是否需要對Segment里的HashEntry數組進行擴容,第二步定位添加元素的位置然后放在HashEntry數組里。

是否需要擴容。在插入元素前會先判斷Segment里的HashEntry數組是否超過容量(threshold),如果超過閥值,數組進行擴容。值得一提的是,Segment的擴容判斷比HashMap更恰當,因為HashMap是在插入元素后判斷元素是否已經到達容量的,如果到達了就進行擴容,但是很有可能擴容之后沒有新元素插入,這時HashMap就進行了一次無效的擴容。

如何擴容。擴容的時候首先會創建一個兩倍於原容量的數組,然后將原數組里的元素進行再hash后插入到新的數組里。為了高效ConcurrentHashMap不會對整個容器進行擴容,而只對某個segment進行擴容。

ConcurrentHashMap的size操作

如果我們要統計整個ConcurrentHashMap里元素的大小,就必須統計所有Segment里元素的大小后求和。Segment里的全局變量count是一個volatile變量,那么在多線程場景下,我們是不是直接把所有Segment的count相加就可以得到整個ConcurrentHashMap大小了呢?不是的,雖然相加時可以獲取每個Segment的count的最新值,但是拿到之后可能累加前使用的count發生了變化,那么統計結果就不准了。所以最安全的做法,是在統計size的時候把所有Segment的put,remove和clean方法全部鎖住,但是這種做法顯然非常低效。

因為在累加count操作過程中,之前累加過的count發生變化的幾率非常小,所以ConcurrentHashMap的做法是先嘗試2次通過不鎖住Segment的方式來統計各個Segment大小,如果統計的過程中,容器的count發生了變化,則再采用加鎖的方式來統計所有Segment的大小。

那么ConcurrentHashMap是如何判斷在統計的時候容器是否發生了變化呢?使用modCount變量,在put , remove和clean方法里操作元素前都會將變量modCount進行加1,那么在統計size前后比較modCount是否發生變化,從而得知容器的大小是否發生變化。

轉自:http://blog.csdn.net/yansong_8686/article/details/50664351


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM