1.概述
Apache Arrow 是 Apache 基金會全新孵化的一個頂級項目。它設計的目的在於作為一個跨平台的數據層,來加快大數據分析項目的運行速度。
2.內容
現在大數據處理模型很多,用戶在應用大數據分析時,除了將 Hadoop 等大數據平台作為一個存儲和批處理平台之外,同樣也得關注系統的擴展性和性能。過去開源社區已經發布了很多工具來完善大數據分析的生態系統,這些工具包含了數據分析的各個層面,例如列式存儲格式(Parquet,ORC),內存計算模型(Drill,Spark,Impala 和 Storm)以及其強大的 API 接口。而 Arrow 則是最新加入的一員,它提供了一種跨平台應用的內存數據交換格式。
在數據快速增長和復雜化的情況下,提高大數據分析性能一個重要的途徑是對列式數據的設計和處理。列式數據處理借助了向量計算和 SIMD 使我們可以充分挖掘硬件的潛力。而 Apache Drill 其大數據查詢引擎無論是在硬盤還是內存中數據都是以列的方式存在的,而 Arrow 就是由 Drill 中的 Value Vector 這一數據格式發展而來。此外,Arrow 也支持關系型和動態數據集。
Arrow 的誕生為大數據生態帶來了很多可能性,有了 Arrow 作為今后標准數據交換格式,各個數據分析的系統和應用之間的交互性可以說是揭開了新的篇章。過去大部分的 CPU 周期都花在了數據的序列化與反序列化上,現在我們則能夠實現不同系統之間數據的無縫鏈接。這意味着使用者在不同系統結合時,不用在數據格式上話費過多的時間。
3.Arrow Group
Arrow 的內存數據結構如下所示:
從上圖中,我們可以很清晰的看出,傳統的內存數據格式,各個字段的分布是以沒一行呈現,相同字段並未集中排列在一起。而通過 Arrow 格式化后的內存數據,可以將相同字段集中排列在一起。我們可以很方便的使用 SQL 來操作數據。
傳統的訪問各個數據模型中的數據以及使用 Arrow 后的圖,如下所示:
通過上圖可以總結出以下觀點:
- 每個系統都有屬於自己的內存格式。
- 70~80% 的 CPU 浪費在序列化和反序列化上。
- 在多個項目都實現的類似的功能(Copy & Convert)。
而在看上述使用 Arrow 后,得出以下結論:
- 所有的系統都使用相同的內存格式。
- 沒有跨系統通信開銷。
- 項目可以貢獻功能(比如,Parquet 到 Arrow 的讀取)。
4.Arrow 數據格式
Arrow 列式數據格式如下所示:
persons = [{ name: 'wes', iq: 180, addresses: [ {number: 2, street 'a'}, {number: 3, street 'bb'} ] }, { name: 'joe', iq: 100, addresses: [ {number: 4, street 'ccc'}, {number: 5, street 'dddd'}, {number: 2, street 'f'} ] }]
從上述 JSON 數據格式來看,person.iq 分別是 180 和 100,以如下方式排列:
而 persons.addresses.number 的排列格式如下所示:
5.特性
5.1 Fast
Apache Arrow 執行引擎,利用最新的SIMD(單輸入多個數據)操作包括在模型處理器,用於分析數據處理本地向量優化。數據的列式布局也允許更好地利用 CPU 緩存,將所有與列操作相關的數據以盡可能緊湊的格式放置。
5.2 Flexible
Arrow 扮演着高性能的接口在各個復雜的系統中,它也支持工業化的編程語言。Java,C,C++,Python 以及今后更多的語言。
5.3 Standard
Apache Arrow 由 13 個開源項目開發者支持,包含 Calcite, Cassandra, Drill, Hadoop, HBase, Ibis, Impala, Kudu, Pandas, Parquet, Phoenix, Spark, 和 Storm。
6.Example
使用 Python 來處理 Spark 或是 Drill 中的數據,如下圖所示:
- 快速的、語言無關的二進制數據幀格式的文件。
- 使用 Python 去寫。
- 讀取速度接近磁盤 IO 性能。
部分實現示例代碼,如下所示:
import feather path = 'my_data.feather' feather.write_dataframe(df, path) df = feather.read_dataframe(path)
7.總結
Apache Arrow 當前發布了 0.1.0 第一個版本,官方目前獲取的資料的信息較少,大家可以到官方的 JIRA 上獲取更多咨詢信息,以及 Arrow 提供的開發者聊天室去獲取更多的幫助。
8.結束語
這篇博客就和大家分享到這里,如果大家在研究學習的過程當中有什么問題,可以加群進行討論或發送郵件給我,我會盡我所能為您解答,與君共勉!