word2vec學習筆記
前言
最近一個月事情多,心力交瘁,臨近過年這幾天進入到啥也不想干的狀態,要想擺脫這種狀態最好的方法就是趕緊看書寫東西,給自己一些正反饋,走出負面循環。過完年要做一些NLP相關的事情了,所有要大致了解下相關內容,第一個准備深入了解的就是word2vec,這是一種詞嵌入模型主要作用就是為語言單詞尋找一種盡可能合理的向量化表示,一方面能保持單詞的一些語義特征(如相似性);另一方面能是向量維度大小比較合理。Word2vec是身兼這兩種特點的詞嵌入表示。當然沒有免費的午餐,我們要通過訓練得到這種表達。NLP和CV對待特征的思路很不一樣,這也是我剛入NLP的感覺。
word2vec理論
這部分要仔細寫起來很糾結,網上也有一堆類似的教程,我就不做詳細介紹了,這里只講個大概。一下內容大多來自standford CS224d lecture1。NLP需要先將文檔進行分詞然后對分詞進行編碼,編碼最簡單的就是One-hot vector一個單詞占一個坑,但是這樣一方面一個單詞的維度過高,另一方面無法表達向量之間的關系。word2vec有前端和后端之分,前端有CBOW和SKIP-GRAM這兩種模型,后端有負采樣和哈弗曼樹這兩種模型,前端和后端可以自由組合。不過常用的高效實現都是采用Skip-gram + 負采樣.
Skip-gram
Skip-gram的原理是對輸入的單詞預測其上下文,比如有一句話是{“The”, “cat”, ”jumped”,”over”, “the”, “puddle”},skip-gram模型對輸入中心詞語"jumped"進行預測輸出"jumped"的上下文“The”, “cat”, ”over”, “the”, “puddle”,聽起來感覺很神奇。下面這張圖片表示了Skip-gram模型運行的過程。Skip-gram本質上就是一個邏輯回歸。
Skip-gram的運行方式主要有以下幾步驟:
- 對單詞生成one-hot輸入向量\(x_k\)
- 得到上下文的嵌入詞向量\(v_c = Vx\)
- 通過\(u = Uu_c\)產生2m個得分向量\(u_{c-m},...,u_{c-1},u_{c+1},...,u_{c+m}\)
- 將分向量轉換成概率分布\(y=softmax(u)\)
- 最后將產生的概率與真實的概率分布做匹配
Skip-gram的目標/損失函數如下:
負采樣
上面的目標/損失函數需要對整個詞匯表\(|V|\)進行計算,代價非常的高,因此引入了負采樣。負采樣的思想是:我們不用去循環整個單詞表,而只是采樣一些負面的樣本就夠了,其概率分布與單詞表中的頻率相匹配。考慮一個詞的"詞-上下文"對\((w,c)\),令\(P(D=1|w,c)\)為\((w,c)\)來自語料庫的概率,則\(P(D=1|w,c)\)為不是來自語料庫的概率,我們有:
我們需要建立一個新的目標函數。如果\((w,c)\)真是來自與語料庫,目標函數能夠最大化\(P(D=1|w,c)\)。我們可以采用最大似然估計來得到模型參數。
這是的\(\theta\)可以看做是上面的\(U,V\),\(\tilde{D}\)表示負面的語料庫。我們可一進一步把目標函數寫成:
這里\(\tilde{u}_k\)是由負采樣得到。
基於tensorflow的word2vec實現
上面大概介紹了一下word2vec的原理,講的很簡略,要想仔細了解還是去看看網上的《word2vec的數學原理》一文,下面介紹tensorflow里面自帶的例子word2vec的實現。
# These are all the modules we'll be using later. Make sure you can import them
# before proceeding further.
%matplotlib inline
from __future__ import print_function
import collections
import math
import numpy as np
import os
import random
import tensorflow as tf
import zipfile
import seaborn as sbn
from matplotlib import pylab
%config InlineBackend.figure_format = 'svg'
from six.moves import range
from six.moves.urllib.request import urlretrieve
from sklearn.manifold import TSNE
url = 'http://mattmahoney.net/dc/'
def maybe_download(filename, expected_bytes):
"""Download a file if not present, and make sure it's the right size."""
if not os.path.exists(filename):
filename, _ = urlretrieve(url + filename, filename)
statinfo = os.stat(filename)
if statinfo.st_size == expected_bytes:
print('Found and verified %s' % filename)
else:
print(statinfo.st_size)
raise Exception(
'Failed to verify ' + filename + '. Can you get to it with a browser?')
return filename
filename = maybe_download('text8.zip', 31344016)
def read_data(filename):
"""Extract the first file enclosed in a zip file as a list of words"""
with zipfile.ZipFile(filename) as f:
data = tf.compat.as_str(f.read(f.namelist()[0])).split()
return data
words = read_data(filename)
print('Data size %d' % len(words))
上面的代碼主要功能是下載數據集並且讀取數據,載入內存的是一個很長的文本序列。
vocabulary_size = 50000
def build_dataset(words):
count = [['UNK', -1]]
count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
dictionary = dict()
for word, _ in count:
dictionary[word] = len(dictionary)
data = list()
unk_count = 0
for word in words:
if word in dictionary:
index = dictionary[word]
else:
index = 0 # dictionary['UNK']
unk_count = unk_count + 1
data.append(index)
count[0][1] = unk_count
reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return data, count, dictionary, reverse_dictionary
data, count, dictionary, reverse_dictionary = build_dataset(words)
print('Most common words (+UNK)', count[:5])
print('Sample data', data[:10])
del words # Hint to reduce memory.
上面的代碼短主要功能是為數據集進行編碼,其中使用了most_common,所以單詞會按照在文檔中出現的次數進行編碼,具體來說就是出現次數多的單詞的編碼會相對小一些,這個在后面負采樣中會用到。
data_index = 0
def generate_batch(batch_size, num_skips, skip_window):
global data_index
assert batch_size % num_skips == 0
assert num_skips <= 2 * skip_window
batch = np.ndarray(shape=(batch_size), dtype=np.int32)
labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
span = 2 * skip_window + 1 # [ skip_window target skip_window ]
buffer = collections.deque(maxlen=span) # deque窗口 大小為 2*skip_window + 1
for _ in range(span):
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
for i in range(batch_size // num_skips): #兩層循環,一個batch有batch/num_skips個數據,每個數據的label大小為num_skips
target = skip_window # target label at the center of the buffer
targets_to_avoid = [ skip_window ]
for j in range(num_skips):
while target in targets_to_avoid:
target = random.randint(0, span - 1)
targets_to_avoid.append(target)
batch[i * num_skips + j] = buffer[skip_window]
labels[i * num_skips + j, 0] = buffer[target]
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
return batch, labels
print('data:', [reverse_dictionary[di] for di in data[:8]])
for num_skips, skip_window in [(2, 1), (4, 2)]:
data_index = 0
batch, labels = generate_batch(batch_size=8, num_skips=num_skips, skip_window=skip_window)
print('\nwith num_skips = %d and skip_window = %d:' % (num_skips, skip_window))
print(batch)
print(' batch:', [reverse_dictionary[bi] for bi in batch])
print(' labels:', [reverse_dictionary[li] for li in labels.reshape(8)])
對於data: ['anarchism', 'originated', 'as', 'a', 'term', 'of', 'abuse', 'first']上面的操作會形成一個這樣的輸出 batch中存儲的是id, 假設我們去skip_size = 4, skip_window = 2那么,單詞 as 所對應的context的word個數就是4個,所以batch中有4個as, 所對應的就是context中的word
12 as -> 195 term
12 as -> 5239 anarchism
12 as -> 6 a
12 as -> 3084 originated
6 a -> 12 as
6 a -> 3084 originated
6 a -> 2 of
6 a -> 195 term
batch_size = 128
embedding_size = 128 # Dimension of the embedding vector.
skip_window = 1 # How many words to consider left and right.
num_skips = 2 # How many times to reuse an input to generate a label.
# We pick a random validation set to sample nearest neighbors. here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
valid_examples = np.array(random.sample(range(valid_window), valid_size))
num_sampled = 64 # Number of negative examples to sample.
graph = tf.Graph()
with graph.as_default(), tf.device('/cpu:0'):
# Input data.
train_dataset = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
# Variables.
embeddings = tf.Variable(
tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
softmax_weights = tf.Variable(
tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
softmax_biases = tf.Variable(tf.zeros([vocabulary_size]))
# Model.
# Look up embeddings for inputs.
embed = tf.nn.embedding_lookup(embeddings, train_dataset) #其實就是按照train_dataset順序返回embeddings中的第train_dataset行。
# Compute the softmax loss, using a sample of the negative labels each time.
loss = tf.reduce_mean(
tf.nn.nce_loss(softmax_weights, softmax_biases, embed,
train_labels, num_sampled, vocabulary_size))#是對類別太多的情況下loss計算的一種加速方法,具體可以參考文檔
# Optimizer.
# Note: The optimizer will optimize the softmax_weights AND the embeddings.
# This is because the embeddings are defined as a variable quantity and the
# optimizer's `minimize` method will by default modify all variable quantities
# that contribute to the tensor it is passed.
# See docs on `tf.train.Optimizer.minimize()` for more details.
optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss)
# Compute the similarity between minibatch examples and all embeddings.
# We use the cosine distance:
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(
normalized_embeddings, valid_dataset)
similarity = tf.matmul(valid_embeddings, tf.transpose(normalized_embeddings))
上面的代碼就是tensorflow實現的word2vec的skip-gram模型,本質上就是一個邏輯回歸啊,和上面的理論還是有區別的,不過這里用的到了nce_loss,這個函數里面包括了negtive sample,后面會詳細介紹。
num_steps = 100001
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
print('Initialized')
average_loss = 0
for step in range(num_steps):
batch_data, batch_labels = generate_batch(
batch_size, num_skips, skip_window)
feed_dict = {train_dataset : batch_data, train_labels : batch_labels}
_, l = session.run([optimizer, loss], feed_dict=feed_dict)
average_loss += l
if step % 2000 == 0:
if step > 0:
average_loss = average_loss / 2000
# The average loss is an estimate of the loss over the last 2000 batches.
print('Average loss at step %d: %f' % (step, average_loss))
average_loss = 0
# note that this is expensive (~20% slowdown if computed every 500 steps)
if step % 10000 == 0:
sim = similarity.eval()
for i in range(valid_size):
valid_word = reverse_dictionary[valid_examples[i]]
top_k = 8 # number of nearest neighbors
nearest = (-sim[i, :]).argsort()[1:top_k+1]
log = 'Nearest to %s:' % valid_word
for k in range(top_k):
close_word = reverse_dictionary[nearest[k]]
log = '%s %s,' % (log, close_word)
print(log)
final_embeddings = normalized_embeddings.eval()
num_points = 400
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
two_d_embeddings = tsne.fit_transform(final_embeddings[1:num_points+1, :])
def plot(embeddings, labels):
assert embeddings.shape[0] >= len(labels), 'More labels than embeddings'
pylab.figure(figsize=(15,15)) # in inches
for i, label in enumerate(labels):
x, y = embeddings[i,:]
pylab.scatter(x, y)
pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points',
ha='right', va='bottom')
pylab.savefig('softmax_loss.svg', format='svg')
pylab.show()
words = [reverse_dictionary[i] for i in range(1, num_points+1)]
plot(two_d_embeddings, words)
最后得到的結果如下
nce_loss
nce_loss的源碼如下
def nce_loss(weights, #[num_classes, dim] dim就是emdedding_size
biases, #[num_classes] num_classes就是word的個數(不包括重復的)
inputs, #[batch_size, dim]
labels, #[batch_size, num_true] 這里,我們的num_true設置為1,就是一個輸入對應一個輸出
num_sampled,#要取的負樣本的個數(per batch)
num_classes,#類別的個數(在這里就是word的個數(不包含重復的))
num_true=1,
sampled_values=None,
remove_accidental_hits=False,
partition_strategy="mod",
name="nce_loss"):
logits, labels = _compute_sampled_logits(
weights,
biases,
inputs,
labels,
num_sampled,
num_classes,
num_true=num_true,
sampled_values=sampled_values,
subtract_log_q=True,
remove_accidental_hits=remove_accidental_hits,
partition_strategy=partition_strategy,
name=name)
sampled_losses = sigmoid_cross_entropy_with_logits(
logits, labels, name="sampled_losses")
#此函數返回的tensor與輸入logits同維度。 _sum_rows之后,就得到了每個樣本的corss entropy。
# sampled_losses is batch_size x {true_loss, sampled_losses...}
# We sum out true and sampled losses.
return _sum_rows(sampled_losses)
#在word2vec中對此函數的返回調用了reduce_mean() 就獲得了平均 cross entropy
# _compute_sampled_logits源碼如下
def _compute_sampled_logits(weights,
biases,
inputs,
labels,
num_sampled,
num_classes,
num_true=1,
sampled_values=None,
subtract_log_q=True,
remove_accidental_hits=False,
partition_strategy="mod",
name=None):
if not isinstance(weights, list):
weights = [weights]
with ops.op_scope(weights + [biases, inputs, labels], name,
"compute_sampled_logits"):
if labels.dtype != dtypes.int64:
labels = math_ops.cast(labels, dtypes.int64)
labels_flat = array_ops.reshape(labels, [-1])
# Sample the negative labels.
# sampled shape: [num_sampled] tensor
# true_expected_count shape = [batch_size, 1] tensor
# sampled_expected_count shape = [num_sampled] tensor
if sampled_values is None:
sampled_values = candidate_sampling_ops.log_uniform_candidate_sampler(
true_classes=labels,
num_true=num_true,
num_sampled=num_sampled,
unique=True,
range_max=num_classes)
NOTE:這個函數是通過log-uniform進行取樣的\(P(class)=\frac{(log(class+2)−log(class+1))}{log(rang\_max+1)}\),取樣范圍是[0, range_max] ,用這種方法取樣就要求我們的word是按照頻率從高到低排列的。之前對word的處理的確是這樣,class越小取的概率越大。
sampled_softmax_loss
tensorflow的word2vec有的版本的損失函數用到了sampled_softmax_loss他和nce_loss很相似,參數是一模一樣的。
def sampled_softmax_loss(weights,
biases,
labels,
inputs,
num_sampled,
num_classes,
num_true=1,
sampled_values=None,
remove_accidental_hits=True,
partition_strategy="mod",
name="sampled_softmax_loss"):
logits, labels = _compute_sampled_logits(
weights=weights,
biases=biases,
labels=labels,
inputs=inputs,
num_sampled=num_sampled,
num_classes=num_classes,
num_true=num_true,
sampled_values=sampled_values,
subtract_log_q=True,
remove_accidental_hits=remove_accidental_hits,
partition_strategy=partition_strategy,
name=name)
sampled_losses = nn_ops.softmax_cross_entropy_with_logits(labels=labels,
logits=logits)
# sampled_losses is a [batch_size] tensor.
return sampled_losses
主要區別就是sigmoid_cross_entropy_with_logits和softmax_cross_entropy_with_logits,前者不要求類別之間是互斥的,后者要求是互斥的。nce_loss得到的結果會更加平滑一些。下面貼出了用sampled_softmax_loss得到的結果
參考
暫略